
The Alchemy Tutorial

Marc Sumner
Pedro Domingos

Department of Computer Science and Engineering, University of Washington

June 20, 2007

1 Introduction

Alchemy is a software tool designed for a wide range of users. Anyone with a need for a
knowledge base with uncertainty will find Alchemy useful and this is the target audience
of this tutorial. It assumes the reader has general knowledge of classical machine learning
algorithms and tasks and is familiar with first-order and Markov logic and some probability
theory.

Markov logic serves as a general framework which can not only be used for the emerging
field of statistical relational learning, but also can handle many classical machine learning
tasks which many users are familiar with. Instead of addressing only certain domains or
adding ad hoc features to deal with anomalies, Markov logic presents a language to handle
machine learning problems intuitively and comprehensibly. With this in mind, this tutorial
looks to serve two purposes:

• Show the user how to model a few learning tasks in familiar learning representations.

• Introduce the user to learning and inference in Markov logic so that he/she has the
basic tools to develop his/her own applications in this framework.

This tutorial is not meant to be exhaustive in terms of the capabilities of Alchemy. Many
more learning tasks, both classical and emerging, can be handled by Alchemy in an elegant
and intuitive manner. In addition, many new tasks have not been considered in the Markov
logic framework; Alchemy is a work in progress and is continually being extended to meet
these needs. The best catalyst for this progress is user feedback, so please tell us about any
problems or limitations with Alchemy and wishes for the next version.

We start with the basics of Alchemy in the next section before moving on to more
interesting tasks which can be accomplished. All of the datasets used in this tutorial are
available at http://alchemy.cs.washington.edu in the “Datasets” section.

1



2 The Basics

Alchemy has been designed to run on the Linux platform. After downloading it, unzip and
untar the file with tar xvfz alchemy.tgz. This creates a directory alchemy which contains
the source code and documentation. In the file alchemy/src/ type make depend; make

which will produce the executables learnstruct, learnwts, and infer in the directory
alchemy/bin/. If you have problems making the executables, please consult the user’s
manual, as Alchemy is dependent on other programs being present. Throughout the tutorial,
these three commands will be used without specifying the location of them.

Alchemy can perform three basic tasks: structure learning, weight learning, and inference.
The former two involve learning the structure or parameters of a model given a training
database consisting of ground atoms. The latter involves inferring the probability or most
likely state of query atoms given a test database consisting of evidence ground atoms.

The two learning commands, learnstruct and learnwts take the same basic arguments
as input:

-i <string> Input .mln files
-o <string> Output .mln file
-t <string> Training .db files

All other arguments are optional and are set to a default value if not specified. For a list of
all command line options, the reader should consult the developer’s manual.

To perform inference, the command infer requires an MLN with weights (either learned
or hand-crafted), evidence on which it conditions and a set of query predicates:

-i <string> Input .mln files
-r <string> Output file containing inference results
-e <string> Evidence .db files
-q <string> Query atoms (comma-separated with no space)

Again, many other options are available which can be found in the developer’s manual.
One important default at this point is the type of inference being performed. Alchemy
can perform MAP inference which outputs the most likely state of the query atoms or
probabilistic inference which outputs marginal probabilities of the query atoms given the
evidence. The latter is the default.

We have encountered two file types: .mln files and .db files. The former contains the
MLN used for inference or learning, the latter contains a set of ground atoms used as training
examples (when learning) or evidence (when running inference). A .mln file consists of
two basic parts: declarations and formulas. The declaration section must contain at least
one predicate, while the formulas section contains 0 or more formulas. Optionally, one
can enumerate the constants of each type used in the .mln and .db files; if there is no
enumeration, the set of constants is implied from all constants present in both files. A .db

file consists of a set of ground atoms, one per line. Evidence predicates are assumed by

2



default to be closed-world, meaning that if they are not present in the .db file, they are
assumed false. Non-evidence predicates, on the other hand, are assumed open-world by
default. The full syntax of the files can be found in the user’s manual; however, the basics
needed to get started should become apparent as you read this tutorial.

Now that we know the basic commands and file types available in Alchemy, we can move
step by step from simple to complex problems. We end this section with the modeling of
a uniform and binomial distribution and make a natural progession to logistic regression,
hidden markov models, etc. , showing real-world applications along the way.

2.1 Uniform Distribution

Now that we know the basic commands and file types used in Alchemy, we want to start
with the simplest MLN one can think of: the empty MLN. Suppose we want to consider the
output of a coin flip. We can state that the outcome of a flip is heads with the predicate
Heads(flip), where flip ranges from, say, 1 to 20. If Heads(n) is true, then flip n was
heads; otherwise it was tails. By supplying an empty MLN with Heads as the only predicate:

flip = {1,...,20}

Heads(flip)

we can perform probabilistic inference to result in a uniform distribution:

infer -i uniform.mln -r uniform.result -e empty.db -q Heads

Alchemy requires a .db file with evidence; here, empty.db is an empty file. The resulting
file uniform.result shows the marginal probabilities of each grounding of Heads given no
other evidence. In the limit, these should approach 0.5 (note, we can trade off accuracy for
speed by varying the number of samples with the option -maxSteps).

2.2 Binomial Distribution

We can also model a binomial distribution as an MLN. If we move up a step from the empty
MLN and add the unit clause Heads(flip) with a weight w to our MLN:

flip = {1,...,20}

Heads(flip)

// Unit clause

1 Heads(f)

we have a binomial distribution with n being the number of flips (in our case 20) and
p = 1

1+e−w
, where w is the weight of the unit clause (in our case 1). We can verify this by

running probabilistic inference:

3



infer -i binomial.mln -r binomial.result -e empty.db -q Heads

In the limit the marginal probabilities should approach 1

1+e−1 = 0.73.

2.3 Multinomial Distribution

We can easily extend our distribution from binomial to multinomial in Markov logic. For
example, we might want to model the outcome of a six-faced die over a number of throws.
We enumerate the throws and the faces of the die with:

throw = {1,...,20}

face = {1,...,6}

and the outcome of each throw with the following predicate:

Outcome(throw, face)

Additionally, we want to model the fact that each throw has exactly one outcome. This
entails a rule stating that at least one outcome must occur for each throw and one stating
that at most one outcome must occur:

Exist f Outcome(t, f).

Outcome(t, f) ^ f != f’ => !Outcome(t, f’).

These rules must be modeled as hard constraints (denoted by the full stop at the end of the
formula. This type of modeling can become cumbersome when we start dealing with MLNs
with more formulas. Even more severe, MCMC algorithms such as Gibbs sampling will not
converge with these constraints in the model. Fortunately, Alchemy allows us to declare this
type of constraint in a much more compact manner. Instead of the last two formulas, we
can simply declare the predicate Outcome with the ! operator put on the face argument:

Outcome(throw, face!)

The cumbersome notation is no longer necessary and the inference and learning algorithms
enforce these block constraints internally, thus alleviating the problem of convergence and
making inference more efficient.

If we run probabilistic inference on this MLN, querying Outcome:

infer -i multinomial.mln -r multinomial.result -e empty.db -q Outcome

we find that each outcome has an (approximately) equal probability. Now, say we want to
consider a biased die which does not result in each face with equal probability. In Markov
logic, this requires a different weight for each grounding of the face variable, so we would
need to write 6 formulas, each a unit clause Outcome(t, f), with f running from 1 to 6.
Again, Alchemy can help us with some user-friendly notation, the + operator. If we add the
following formula to our MLN:

4



Outcome(t, +f)

then Alchemy produces the clauses for which we want to learn weights. The file biased-die.db
contains data generated from a die biased to roll only a one or a six with equal probability;
we can use this to learn weights for each outcome with:

learnwts -i multinomial-biased.mln -o learned.mln -t biased-die.db

-ne Outcome -noAddUnitClauses

which outputs the learned MLN in the file learned.mln.

3 Social Network Analysis

Now that we have seen some trivial examples, we might want to do something more practical.
We start with a simple social network of friends, smoking, and cancer. The network attempts
to model friendship ties between people, their smoking habits and the causality of cancer.

If we want to model “smoking causes cancer” in first-order logic, this would look like:

∀x Smokes(x) ⇒ Cancer(x)

Of course, this does not hold for all smokers, so in Markov logic we can just tack a weight
on to the rule, or, as we do here, learn a weight from training data. In Alchemy all free
variables are universally quantified, so the formula is

Smokes(x) => Cancer(x)

Other rules we might add are “People with friends who smoke, also smoke” or “People with
friends who don’t smoke, don’t smoke”, i.e.:

Friends(x,y) => (Smokes(x) <=> Smokes(y))

Converted to CNF, this becomes the two clauses:

!Friends(x,y) v Smokes(x) v !Smokes(y)

!Friends(x,y) v !Smokes(x) v Smokes(y)

We can learn weights from the training data with the command

learnwts -d -i smoking.mln -o smoking-out.mln -t smoking-train.db

-ne Smokes,Cancer

Here, -d denotes that we want to run discriminative learning, -o designates the output
MLN, -t specifies the training data, and -ne indicates which predicates are to be viewed
as non-evidence during learning. This produces the file smoking-out.mln with the learned
weights. Using this with the test data, we can compute the marginal probabilities of each
person smoking and getting cancer:

5



infer -ms -i smoking-out.mln -r smoking.result -e smoking-test.db

-q Smokes,Cancer

This gives us marginal probabilities of each ground query atom. Alternatively, we might
want the most likely state of the query atoms, the MAP state. In this case, we would use
the -a option instead of -ms. The output contains each query atom followed by its truth
value (1 = true and 0 = false).

4 Logistic Regression

One of the most wide-spread and effective classifiers in statistical learning, logistic regression,
can be easily implemented in Alchemy. Here, we only deal with binary predictors and
dependent variables, but the extension to these is intuitive as well.

Logistic regression is a regression model of the form:

ln

(

P (Y = 1|X = x)

P (Y = 0|X = x)

)

= α +
n

∑

i=1

βixi (1)

where X is a vector of binary predictors and Y is the dependent variable. So how do we
describe this model in Markov logic? If we look at the model of Markov networks:

P (X = x) =
1

Z
exp(

∑

j

wjfi(x)) (2)

this implies we need one feature for Y and one feature for each Xi,Y in order to arrive at
the model

P (Y = y, X = x) =
1

Z
exp(αy +

∑

j

βjxjy) (3)

resulting in

P (Y = 1|X = x)

P (Y = 0|X = x)
) = exp(α +

∑

j

βjxj)/ exp(0) = exp(α +
n

∑

j

βjxj) (4)

To represent this as an MLN, each parameter is represented as a weight corresponding to
each formula, i.e. α Y and for each i, βi Xi ∧ Y

We demonstrate this on an example from the UCI machine learning data repository, the
voting-records dataset, which contains yes/no votes of Congressmen on 16 issues. The class
to be determined is “Republican” or “Democrat” (our Y ), and each vote is a binary predictor
(our Xi). So, the resulting clauses in the MLN are:

Democrat(x)

HandicappedInfants(x) ^ Democrat(x)

6



WaterProjectCostSharing(x) ^ Democrat(x)

AdoptionOfTheBudgetResolution(x) ^ Democrat(x)

...

This predicts whether a Congressman is a Democrat (if Democrat(x) is false, x is a
Republican). Alternatively, we could have modeled the connection between the predictors
and the dependent variable as an implication, i.e.:

HandicappedInfants(x) => Democrat(x)

These two models are equivalent when we condition on the predictors.
We can perform generative or discriminative weight learning on the mln, given the train-

ing data voting.db with the following command:

learnwts -g -i voting.mln -o voting-gen.mln -t voting-train.db -ne Democrat

or

learnwts -d -i voting.mln -o voting-disc.mln -t voting-train.db -ne Democrat

The weights obtained tell us the relative “goodness” of each vote as it can predict whether
a Congressman is a democrat or not. Given this, we can look at a new Congressman (or
several) and his/her voting record and predict whether he/she is a democrat or republican.
We run inference with

infer -ms -i voting-disc.mln -r voting.result -e voting-test.db -q Democrat

This produces the file voting.result containing the marginal probabilities of each Con-
gressman being a Democrat.

5 Text Classification and Information Retrieval

5.1 Text Classification and Collective Classification

Text classification is an extremely important application of machine learning. We demon-
strate text classification on a subset of the WebKB dataset which contains the text of web
pages from four universities. Each page belongs to one of four classes: course, faculty,

research project, or student.
If a given page contains a given word, then the predicate HasWord(word, page) is true

for that pair; otherwise it is false. This information is given and we wish to infer the class
of a page, given by the predicate Topic(class, page). Therefore, we need a rule

HasWord(+w, p) => Topic(+c, p)

7



for each (word, class) pair and a rule stating that, given no evidence, a page does not belong
to a class:

!Topic(c, p)

That’s it! In fact, we can eliminate the last rule; the addition of a unit clause to the MLN
is helpful in many domains and, for this reason, Alchemy adds unit clauses to the MLN by de-
fault when weights are learned (this can be supressed with the option -noAddUnitClauses).
If we run weight learning, we will learn a weight for every word/class pair representing how
good of a predictor each word is for each class. We can extend this model by stating that
each page must belong to exactly one class in the predicate declaration:

Topic(class!, page)

We run weight learning with the following command:

learnwts -d -i text-class.mln -o text-class-out.mln

-t text-class-train.db -ne Topic

We can then use the classifier to classify test instances with

infer -m -i text-class-out.mln -r text-class.result

-e text-class-test.db -q Topic

We can extend this model to demonstrate how to perform hypertext classification with
Alchemy. WebKB also contains information on which pages are linked to each other, via the
predicate LinkTo(linkid, page, page). We can incorporate this into a rule to perform
hypertext classification:

Topic(c, p1) ^ LinkTo(id, p1, p2) => Topic(c, p2)

We add LinkTo from the dataset to our evidence and this one formula extends our text
classifier to a hypertext classifier. We learn weights and infer as before:

learnwts -d -i hypertext-class.mln -o hypertext-class-out.mln

-t text-class-train.db,links-train.db -ne Topic -dZeroInit

infer -m -i hypertext-class-out.mln -r hypertext-class.result

-e hypertext-class-test.db -q Topic

These rules represent a special case of collective classification. MLNs for many other col-
lective classification tasks can be expressed in this manner; for example, social network
modeling can be achieved by replacing LinkTo() with Friends() and determining topics of
a blog in which they participate instead of the topic of web pages.

8



5.2 Information Retrieval

With the growth of the Internet, information retrieval has grown into an important field.
The task is to retrieve all documents relevant to a query of several words. A simple approach,
vector-space information retrieval, can be easily implemented in Alchemy. We represent the
words in a document with the HasWord predicate as in the previous section. Additionally,
the predicate InQuery(w) is true iff w is in our query. The relevance of a page to our query
is expressed by the predicate Relevant(page). Our simple MLN for information retrieval
looks like this:

InQuery(word)

HasWord(word, page)

Relevant(page)

InQuery(+w) ^ HasWord(+w, p) => Relevant(p)

As web search engines have shown, pages linked to relevant pages are also sometimes relevant.
This is achieved by adding one formula to the MLN involving the LinkTo predicate:

Relevant(p1) ^ LinkTo(id, p1, p2) => Relevant(p2)

Of course, in order to scale to the internet much more work is needed in terms of indexing the
documents, query processing, etc. but these two formulas represent the core of PageRank-
style information retrieval.

6 Entity Resolution

Entity resolution is an important step of data cleaning and information extraction on which
much research has been done. Markov logic allows an intuitive and elegant approach to this
task. In order to demonstrate entity resolution with Alchemy, we take a look at the Cora
dataset containing citations of computer science publications. Citations of the same paper
often appear differently and the task here is to determine which citations are referring to the
same paper. The model used here is based on that of [1].

We start with one basic evidence predicates, HasToken, telling us the actual text and the
“field” (author, title, or venue) of each token in each citation, respectively. The predicate
HasToken(t, f, c) tells us that token t is present in field f in citation c.

Given this evidence, we want to predict which citations are the same, indicated by the
predicate SameCitation. We determine identical citations by looking at each of the fields
author, title, and venue and determining their similarity. This is expressed by the predicate
SameField(f, c1, c2), where f is a field (author, title, or venue) and c1 and c2 are
citations. To recap, the predicates we need are:

9



HasToken(token, field, citation)

SameField(field, citation, citation)

SameCitation(citation, citation)

The formulas we need to perform entity resolution are very compact thanks to the per-
constant + operator. This can be used during weight learning to produce a separate clause
(and, hence, learn a weight) for each value of the variable to which it is applied. For example,
the first rule for entity resolution we want to express “If the same token occurs in the same
field in two separate citations, then the field is the same”; we want to do this for each token
and field pair. In Markov logic, this looks like

Token(+t, i1, c1) ^ InField(i1, +f, c1) ^ Token(+t, i2, c2)

^ InField(i2, +f, c2) => SameField(+f, c1, c2)

Also, we want to make the connection from same field to same citation, doing it for each
field:

SameField(+f, c1, c2) => SameCitation(c1, c2)

Finally, we want to add transitivity to the model (if c1 and c2 are the same citation and c2

and c3 are the same citation, then c1 and c3 are the same citation):

SameCitation(c1, c2) ^ SameCitation(c2, c3) => SameCitation(c1, c3)

We run weight learning on the MLN and data with the following command:

learnwts -d -i er.mln -o er-out.mln -t cora-seg-train.db

-ne SameField,SameCitation

which produces the clauses with learned weights in the file er-out.mln. We can use this to
perform inference on the test data:

infer -ms -i er-out.mln -r er.result -e cora-seg-test.db

-q SameField,SameCitation

The file er.result then contains the marginal probabilities of the query predicates. More
refinements of this model exist which improve the results significantly; for example we could
add transitivity on the SameField predicate. For the state-of-the-art model in Markov logic
for entity resolution, see [4] and [3].

10



7 Hidden Markov Models

A very effective and intuitive approach to many sequential pattern recognition tasks, such
as speech recognition, protein sequence analysis, machine translation, and many others, is
to use a hidden Markov model (HMM). We demonstrate the modeling of an HMM on two
examples. In order to convey the translation of HMMs to MLNs, we use a small traffic
example. We then show a real-world example of applying an HMM in Markov logic to
perform segmentation of Cora citations.

Suppose, on a given day, we observe a car taking three actions: it is either stopped,
driving, or slowing. We assume this is only dependent on the state of the stoplight in front
of it: red, green or yellow. In a Markov process we need to model states and observations

at certain points in time. In Alchemy, we model a state and observation with a first-order
predicate and time is a variable in each of these predicates, i.e.:

state = {Stop, Drive, Slow}

obs = {Red, Green, Yellow}

time = {0,...,10}

State(state, time)

Obs(obs, time)

In Markov logic we need to explicitly express some constraints which are inherent to
HMMs; in particular, we need to state that at each time step there is exactly one state and
observation. This is achieved with the ! operator:

State(s!, t)

Obs(o!, t)

Now, we need for each state and its successor, the probability of this transition and for
each observation-state pair, we need the probability of this emission. In addition, we need
the prior probability of each state at the starting time point. These probabilities can be
represented in Alchemy in three formulas by using the + operator:

State(+s, 0)

State(+s1, t) => State(+s2, t+1)

Obs(+o, t) => State(+s, t)

By using the + operator, we generate a clause for each state/state and observation/state
pair, thus enabling us to learn weights for each of these combinations. These are the obser-
vation and transition matrices of our HMM.

We can learn weights from the data with:

learnwts -d -i traffic.mln -o traffic-out.mln -t traffic-train.db -ne State

11



Then, we can find the most likely sequence of states by querying all State atoms:

infer -m -i traffic-out.mln -r traffic.result -e traffic-test.db -q State

Although this is a toy example, it showcases the intuitiveness and many of the capabilities
of Alchemy: block variables, weight learning with EM and compactness of representation.
We now move on to a real-world application of HMMs, segmentation of citations, and how
to achieve this with Alchemy.

8 Information Extraction

In Section 6, we assumed the citation data was already segmented, i.e. it was known which
text belonged to which field, making the InField an evidence predicate. In general, this is
not the case and we need to segment the text into its fields. A common approach is to use
an HMM and we demonstrate how to do this with Alchemy on the unsegmented Cora data.

Now, the InField predicate is non-evidence, leaving only the text, in form of the Token

predicate as our only evidence. We model the observation matrix of our HMM with the rule

Token(+t, i, c) => InField(i, +f, c)

and the transition matrix via

InField(i, +f, c) => InField(i+1, +f, c)

We also want to impose the constraint that a position in a citation can be part of at most
one field, thus:

!(f1 = f2) => (!InField(i, +f1, c) v !InField(i, +f2 ,c))

We learn the weights with the call:

bin/learnwts -d -i seg.mln -o seg-out.mln -t cora-unseg-train.db -ne InField

and use the output file to perform inference with:

bin/infer -ms -i seg-out.mln -r seg.result -e cora-unseg-test.db -q InField

Here, we have treated segmentation and entity resolution as two separate tasks. This is
a valid approach; however, the information obtained from the entity resolution step can be
utilized to improve the segmentation. For the state-of-the-art of this type of joint inference
in information extraction using Markov logic, see [3].

12



9 Natural Language Processing

9.1 Statistical Parsing

Statistical parsing is the task of computing the most probable parse of a sentence given a
probabilistic (or weighted) context-free grammar (CFG). The weights of the probabilistic
or weighted CFG are typically learned on a corpus of texts. Here, we demonstrate how to
translate a given CFG to an MLN and learn weights for the grammar on a small corpus of
simple sentences.

A context-free grammar in Chomsky normal form consists of rules of the form:

A → BC

A → a

where A, B, and C are non-terminal symbols and a is a terminal symbol. Here, we want
to construct a grammar for parsing simple English language sentences. One such simple
grammar might look like this:

S → NP V P

NP → Adj N

NP → Det N

V P → V NP

Here, S stands for sentence, NP for noun phrase, V P for verb phrase, Adj for adjective, N
for noun, Det for determiner, and V for verb. To translate this into an MLN, we first encode
each production rule in the grammar as a clause:

NP(i,j) ^ VP(j,k) => S(i,k)

Adj(i,j) ^ N(j,k) => NP(i,k)

Det(i,j) ^ N(j,k) => NP(i,k)

V(i,j) ^ NP(j,k) => VP(i,k)

Here, i and j indicate indices between the words, including at the beginning and at the end
of the sentence. So, a sentence with n words has n + 1 indices. For example, the words in
the sentence “The dog chases the cat” would be indexed as 0 The 1 dog 2 chases 3 the 4 cat

5.
In addition, we need a lexicon for our text telling us the parts of speech of each word.

For our small corpus, it looks like this:

// Determiners

Token("a",i) => Det(i,i+1)

Token("the",i) => Det(i,i+1)

13



// Adjectives

Token("big",i) => Adj(i,i+1)

Token("small",i) => Adj(i,i+1)

// Nouns

Token("dogs",i) => N(i,i+1)

Token("dog",i) => N(i,i+1)

Token("cats",i) => N(i,i+1)

Token("cat",i) => N(i,i+1)

Token("fly",i) => N(i,i+1)

Token("flies",i) => N(i,i+1)

// Verbs

Token("chase",i) => V(i,i+1)

Token("chases",i) => V(i,i+1)

Token("eat",i) => V(i,i+1)

Token("eats",i) => V(i,i+1)

Token("fly",i) => V(i,i+1)

Token("flies",i) => V(i,i+1)

If we left it at this, then two problems would occur. First, if there are two or more production
rules with the same left side (such as NP → Adj N and NP → Det N), then we need to
enforce the constraint that only one of them fires. This is achieved with a rule of the form:

NP(i,k) ^ Det(i,j) => !Adj(i,j)

Basically, this is saying “If a noun phrase results in a determiner and a noun, it cannot result
in and adjective and a noun”. The second problem involves ambiguities in the lexicon. If
we have homonyms belonging to different parts of speech, such as Fly (noun or verb), then
we have to make sure that only one of these parts of speech is assigned. We can enforce
this constraint in a general manner by making mutual exlcusion rules for each part of speech
pair, i.e.:

!Det(i,j) v !Adj(i,j)

!Det(i,j) v !N(i,j)

!Det(i,j) v !V(i,j)

!Adj(i,j) v !N(i,j)

!Adj(i,j) v !V(i,j)

!N(i,j) v !V(i,j)

We now have a complete MLN (consisting of the grammar and the lexicon) for which we can
learn weights based on training data. We treat each sentence as a separate database, thus
the call is

14



learnwts -d -i cfg.mln -o cfg-out.mln -t s1-train.db,s2-train.db,...,

s12-train.db -ne NP,VP,N,V,Det,Adj -multipleDatabases

This produces the weighted CFG in cfg-out.mln with which we can parse our test sentences:

infer -m -i cfg-out.mln -r parse.result -e test/s1-test.db

-q NP,VP,N,V,Det,Adj

The extension to weighted definite clause grammars is intuitive because Markov logic can
capture relations between parts of speech by simply adding an argument to the predicate.
For example, if we want to enforce noun-verb agreement, we would add the number to the
noun phrase and verb phrase predicates, i.e. NP(pos, pos, num) and VP(pos, pos, num)

and our top-level rule would become NP(i,j,n) ∧ VP(j,k,n) => S(i,k).

9.2 Other NLP tasks

The field of NLP concerns itself with many other tasks besides parsing, such as word sense
disambiguation, semantic role labeling, etc. Alchemy lends itself well to many of these;
however, extensive research has not been done yet in applying Alchemy to these areas.

10 Bayesian Networks

Bayesian networks are one of the most popular and widespread graphical models and many
people from fields other than AI and machine learning are familiar with them. This frame-
work can be easily implemented in Markov logic; we show how this is done on the classic
ALARM Bayesian network used to monitor patients in intensive care units. It contains 37
nodes and 46 arcs.

In a Bayesian network, nodes represent discrete variables and arcs the dependencies
between them. A conditional probability table (CPT) is associated with each node indicating
the probability distribution for the variable conditioned on its parents. We want to represent
every variable in a Bayesian network as a predicate; thus, we declare for each variable Var a
unary predicate Var(varValue!), indicating that each variable can only take on one of its
values (i.e. if CVP is LOW, it cannot be NORMAL or HIGH). This results in the following predicate
declarations:

HISTORY(historyValue!)

CVP(cvpValue!)

PCWP(pcwpValue!)

HYPOVOLEMIA(hypovolemiaValue!)

LVEDVOLUME(lvedvolumeValue!)

LVFAILURE(lvfailureValue!)

STROKEVOLUME(strokevolumeValue!)

15



ERRLOWOUTPUT(errlowoutputValue!)

HRBP(hrbpValue!)

HREKG(hrekgValue!)

ERRCAUTER(errcauterValue!)

HRSAT(hrsatValue!)

INSUFFANESTH(insuffanesthValue!)

ANAPHYLAXIS(anaphylaxisValue!)

TPR(tprValue!)

EXPCO2(expco2Value!)

KINKEDTUBE(kinkedtubeValue!)

MINVOL(minvolValue!)

FIO2(fio2Value!)

PVSAT(pvsatValue!)

SAO2(sao2Value!)

PAP(papValue!)

PULMEMBOLUS(pulmembolusValue!)

SHUNT(shuntValue!)

INTUBATION(intubationValue!)

PRESS(pressValue!)

DISCONNECT(disconnectValue!)

MINVOLSET(minvolsetValue!)

VENTMACH(ventmachValue!)

VENTTUBE(venttubeValue!)

VENTLUNG(ventlungValue!)

VENTALV(ventalvValue!)

ARTCO2(arco2Value!)

CATHECOL(cathecolValue!)

HR(hrValue!)

CO(coValue!)

BP(bpValue!)

As shown in [2], we can convert a Bayesian network to a weighted CNF expression (an
MLN) by producing a clause for each line and value of the variable and enforcing mutually
exclusive and exhaustive constraints on the variables (we have already achieved this with
the ! operator. Each clause contains the negation of each variable in the row of the CPT
and the weight is − ln(p), where p is the corresponding probability in the CPT. Entries with
zero probability cannot be translated in this manner; however, this problem can be solved by
making these lines of the CPT hard clauses and not negating the variables. For our example
we arrive at the MLN found in alarm.mln.

Note, these weights could easily be learned from training data, either discriminatively or
generatively. In the case of Bayesian networks, the partition function is known (it is 1) and
the weights can be computed exactly.

16



References

[1] A. McCallum and B. Wellner. Conditional models of identity uncertainty with application
to noun coreference. In Proceedings of the NIPS 04, 2004.

[2] James D. Park. Using weighted max-sat engines to solve mpe. In Eighteenth National

Conference on Artificial Intelligence, pages 682–687, Menlo Park, CA, USA, 2002. Amer-
ican Association for Artificial Intelligence.

[3] H. Poon and P. Domingos. Joint inference in information extraction. In Proceedings

of the Twenty-Second National Conference on Artificial Intelligence, Boston, MA, 2007.
AAAI Press. To appear.

[4] P. Singla and P. Domingos. Entity resolution with markov logic. In Proceedings of the

Sixth IEEE International Conference on Data Mining, pages 572–582, Hong Kong, 2006.
IEEE Computer Society Press.

17


