
Unifying Logical and Statistical AI

Pedro Domingos, Stanley Kok, Hoifung Poon, Matthew Richardson, Parag Singla
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.

{pedrod, koks, hoifung, mattr, parag}@cs.washington.edu

Abstract
Intelligent agents must be able to handle the complexity and
uncertainty of the real world. Logical AI has focused mainly
on the former, and statistical AI on the latter. Markov logic
combines the two by attaching weights to first-order formu-
las and viewing them as templates for features of Markov
networks. Inference algorithms for Markov logic draw on
ideas from satisfiability, Markov chain Monte Carlo and
knowledge-based model construction. Learning algorithms
are based on the voted perceptron, pseudo-likelihood and in-
ductive logic programming. Markov logic has been success-
fully applied to problems in entity resolution, link predic-
tion, information extraction and others, and is the basis of
the open-source Alchemy system.

Introduction
From the earliest days, AI research has tended to fall into
two largely separate strands: one focused on logical rep-
resentations, and one focused on statistical ones. The first
strand includes approaches like logic programming, descrip-
tion logics, classical planning, symbolic parsing, rule induc-
tion, etc. The second includes approaches like Bayesian net-
works, hidden Markov models, Markov decision processes,
statistical parsing, neural networks, etc. Logical approaches
tend to emphasize handling complexity, and statistical ones
uncertainty. Clearly, however, both of these are necessary to
build intelligent agents and handle real-world applications.
Our goal is thus to combine the two in a single coherent
framework. In this paper, we describe Markov logic, a repre-
sentation that has both finite first-order logic and probabilis-
tic graphical models as special cases, and give an overview
of current inference and learning algorithms for it.

Markov logic is part of an enterprise that has been gath-
ering momentum for some time. Attempts to combine logic
and probability in AI date back to at least Nilsson (1986).
Bacchus (1990), Halpern (1990) and coworkers (e.g., Bac-
chus et al. (1996)) produced a substantial body of relevant
theoretical work. Around the same time, several authors
began using logic programs to compactly specify complex
Bayesian networks, an approach known as knowledge-based
model construction (Wellman, Breese, & Goldman 1992).
More recently, many combinations of (subsets of) first-order
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

logic and probability have been proposed in the burgeon-
ing field of statistical relational learning (Dietterich, Getoor,
& Murphy 2004), including probabilistic relational models
(Friedman et al. 1999), stochastic logic programs (Muggle-
ton 1996), Bayesian logic programs (Kersting & De Raedt
2001), relational dependency networks (Neville & Jensen
2004), and others. Markov logic is a step further in gen-
erality from these.

Preliminaries
A Markov network (also known as Markov random field)
is a model for the joint distribution of a set of variables
X = (X1, X2, . . . , Xn) ∈ X (Della Pietra, Della Pietra, &
Lafferty 1997). It is composed of an undirected graph G and
a set of potential functions φk . The graph has a node for each
variable, and the model has a potential function for each
clique in the graph. A potential function is a non-negative
real-valued function of the state of the corresponding clique.
The joint distribution represented by a Markov network is
given by

P (X =x) =
1

Z

∏

k

φk(x{k}) (1)

where x{k} is the state of the kth clique (i.e., the state of
the variables that appear in that clique). Z, known as the
partition function, is given by Z =

∑

x∈X

∏

k φk(x{k}).
Markov networks are often conveniently represented as log-
linear models, with each clique potential replaced by an ex-
ponentiated weighted sum of features of the state, yielding

P (X =x) =
1

Z
exp

∑

j

wjfj(x)

 (2)

A feature may be any real-valued function of the state. This
paper will focus on binary features, fj(x) ∈ {0, 1}. In
the most direct translation from the potential-function form
(Equation 1), there is one feature corresponding to each
possible state x{k} of each clique, with its weight being
log φk(x{k}). This representation is exponential in the size
of the cliques. However, we are free to specify a much
smaller number of features (e.g., logical functions of the
state of the clique), allowing for a more compact represen-
tation than the potential-function form, particularly when
large cliques are present. Markov logic takes advantage of
this.

Formulas in first-order logic are constructed from logical
connectives, quantifiers, and symbols for predicates, con-
stants, variables and functions. A grounding of a predicate
is a replacement of all of its arguments by constants.1 Like-
wise, a grounding of a formula is a replacement of all of its
variables by constants. A possible world is an assignment of
truth values to all possible groundings of predicates (ground
atoms).

Markov Logic
A first-order KB can be seen as a set of hard constraints
on the set of possible worlds: if a world violates even one
formula, it has zero probability. The basic idea in Markov
logic is to soften these constraints: when a world violates
one formula in the KB it is less probable, but not impossible.
The fewer formulas a world violates, the more probable it
is. Each formula has an associated weight that reflects how
strong a constraint it is: the higher the weight, the greater the
difference in log probability between a world that satisfies
the formula and one that does not, other things being equal.
Definition 1 (Richardson & Domingos 2006) A Markov
logic network (MLN) L is a set of pairs (Fi, wi), where Fi

is a formula in first-order logic and wi is a real number. To-
gether with a finite set of constants C = {c1, c2, . . . , c|C|},
it defines a Markov network ML,C (Equations 1 and 2) as
follows:

1. ML,C contains one binary node for each possible ground-
ing of each predicate appearing in L. The value of the
node is 1 if the ground predicate is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding
of each formula Fi in L. The value of this feature is 1 if
the ground formula is true, and 0 otherwise. The weight
of the feature is the wi associated with Fi in L.

Thus there is an edge between two nodes of ML,C iff
the corresponding ground predicates appear together in at
least one grounding of one formula in L. For example, an
MLN containing the formulas ∀x Smokes(x) ⇒ Cancer(x)
(smoking causes cancer) and ∀x∀y Friends(x, y) ⇒
(Smokes(x) ⇔ Smokes(y)) (friends have similar smoking
habits) applied to the constants Anna and Bob (or A and B

for short) yields the ground Markov network in Figure 1. Its
features include Smokes(Anna) ⇒ Cancer(Anna), etc. No-
tice that, although the two formulas above are false as uni-
versally quantified logical statements, as weighted features
of an MLN they capture valid statistical regularities, and in
fact represent a standard social network model (Wasserman
& Faust 1994).

An MLN can be viewed as a template for constructing
Markov networks. From Definition 1 and Equations 1 and 2,
the probability distribution over possible worlds x specified
by the ground Markov network ML,C is given by

P (X =x) =
1

Z
exp

(

F
∑

i=1

wini(x)

)

(3)

1Or, more generally, by ground terms, but for simplicity in this
paper we consider only groundings with constants.

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Figure 1: Ground Markov network obtained by applying an
MLN containing the formulas ∀x Smokes(x) ⇒ Cancer(x)
and ∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y)) to
the constants Anna(A) and Bob(B).

where F is the number of formulas in the MLN and ni(x)
is the number of true groundings of Fi in x. As formula
weights increase, an MLN increasingly resembles a purely
logical KB, becoming equivalent to one in the limit of all in-
finite weights. When the weights are positive and finite, and
all formulas are simultaneously satisfiable, the satisfying so-
lutions are the modes of the distribution represented by the
ground Markov network. Most importantly, Markov logic
allows contradictions between formulas, which it resolves
simply by weighing the evidence on both sides. This makes
it well suited for merging multiple KBs. Markov logic also
provides a natural and powerful approach to the problem of
merging knowledge and data in different representations that
do not align perfectly, as the application section below illus-
trates.

It is interesting to see a simple example of how Markov
logic generalizes first-order logic. Consider an MLN
containing the single formula ∀x R(x) ⇒ S(x) with
weight w, and C = {A}. This leads to four possi-
ble worlds: {¬R(A),¬S(A)}, {¬R(A), S(A)}, {R(A),¬S(A)},
and {R(A), S(A)}. From Equation 3 we obtain that
P ({R(A),¬S(A)}) = 1/(3ew + 1) and the probability of
each of the other three worlds is ew/(3ew + 1). (The de-
nominator is the partition function Z; see the previous sec-
tion.) Thus, if w > 0, the effect of the MLN is to make the
world that is inconsistent with ∀x R(x) ⇒ S(x) less likely
than the other three. From the probabilities above we ob-
tain that P (S(A)|R(A)) = 1/(1 + e−w). When w → ∞,
P (S(A)|R(A)) → 1, recovering the logical entailment.

It is easily seen that all discrete probabilistic models ex-
pressible as products of potentials, including Markov net-
works and Bayesian networks, are expressible in Markov
logic. In particular, many of the models frequently used in
AI can be stated quite concisely as MLNs, and combined
and extended simply by adding the corresponding formulas.
Most significantly, Markov logic facilitates the construction
of non-i.i.d. models (i.e., models where objects are not in-
dependent and identically distributed).

See Richardson and Domingos (2006) for further details
on the Markov logic representation.

Inference
MAP/MPE Inference
In the remainder of this paper we assume that the MLN is in
function-free clausal form. A basic inference task is finding
the most probable state of the world given some evidence.
(This is known as MAP inference in the Markov random
field literature, and MPE inference in the Bayesian network
literature.) Because of the form of Equation 3, in Markov
logic this reduces to finding the truth assignment that max-
imizes the sum of weights of satisfied clauses. This can be
done using any weighted satisfiability solver, and (remark-
ably) need not be more expensive than standard logical in-
ference by model checking. (In fact, it can be faster, if some
hard constraints are softened.) We have successfully used
MaxWalkSAT, a weighted variant of the WalkSAT local-
search satisfiability solver, which can solve hard problems
with hundreds of thousands of variables in minutes (Kautz,
Selman, & Jiang 1997).

One problem with this approach is that it requires propo-
sitionalizing the domain (i.e., grounding all predicates and
clauses in all possible ways), which consumes memory ex-
ponential in the arity of the clauses. We have overcome this
by developing a lazy version of WalkSAT, which grounds
atoms and clauses only as needed (Singla & Domingos
2006b). This takes advantage of the sparseness of relational
domains—where most atoms are false and most clauses are
trivially satisfied—and can reduce memory usage by orders
of magnitude. Our LazySAT algorithm is useful not just for
Markov logic, but as a highly scalable satisfiability tester for
relational domains.

Marginal and Conditional Probabilities
Another key inference task is computing the probability
that a formula holds, given an MLN and set of constants,
and possibly other formulas as evidence. By definition,
the probability of a formula is the sum of the probabilities
of the worlds where it holds, and computing it by brute
force requires time exponential in the number of possible
ground atoms. A more efficient alternative is to use Markov
chain Monte Carlo (MCMC) inference (Gilks, Richardson,
& Spiegelhalter 1996), which samples a sequence of states
according to their probabilities, and counting the fraction of
sampled states where the formula holds. This can be ex-
tended to conditioning on other formulas by rejecting any
state that violates one of them.

If the evidence is a conjunction of ground atoms, as is
typically the case, further efficiency can be gained by apply-
ing a generalization of knowledge-based model construction
(Wellman, Breese, & Goldman 1992). This constructs only
the minimal subset of the ground network required to an-
swer the query, and runs MCMC (or any other probabilis-
tic inference method) on it. The network is constructed by
checking if the atoms that the query formula directly de-
pends on are in the evidence. If they are, the construction
is complete. Those that are not are added to the network,
and we in turn check the atoms they depend on. This pro-
cess is repeated until all relevant atoms have been retrieved.
While in the worst case it yields no savings, in practice it

can vastly reduce the time and memory required for infer-
ence. See Richardson and Domingos (2006) for details.

One problem with applying MCMC to MLNs is that
it breaks down in the presence of deterministic or near-
deterministic dependencies (as do other probabilistic infer-
ence methods). Deterministic dependencies break up the
space of possible worlds into regions that are not reachable
from each other, violating a basic requirement of MCMC.
Near-deterministic dependencies greatly slow down infer-
ence, by creating regions of low probability that are very dif-
ficult to traverse. We have successfully addressed this prob-
lem by combining MCMC with satisfiability testing. Our
MC-SAT algorithm uses WalkSAT to jump between regions
of non-zero probability, while guaranteeing that the proba-
bility estimation process remains unbiased (Poon & Domin-
gos 2006). MC-SAT greatly outperforms standard MCMC
methods like Gibbs sampling and simulated tempering, and
is applicable to any model that can be expressed in Markov
logic, including many standard models in statistical physics,
vision, social network analysis, spatial statistics, etc.

It is also possible to carry out lifted first-order proba-
bilistic inference (akin to resolution) in Markov logic (Braz,
Amir, & Roth 2005).

Learning
Generative Weight Learning
MLN weights can be learned generatively by maximizing
the likelihood of a relational database (Equation 3). (We
make a closed-world assumption: all ground atoms not in
the database are false. This assumption can be removed by
using an EM algorithm to learn from the resulting incom-
plete data.) The gradient of the log-likelihood with respect
to the weights is

∂

∂wi

log Pw(X =x) = ni(x)−
∑

x′

Pw(X =x′)ni(x
′) (4)

where the sum is over all possible databases x′, and Pw(X =
x′) is P (X = x′) computed using the current weight vec-
tor w = (w1, . . . , wi, . . .). In other words, the ith com-
ponent of the gradient is simply the difference between the
number of true groundings of the ith formula in the data
and its expectation according to the current model. Un-
fortunately, computing these expectations requires inference
over the model, which can be very expensive. Most fast nu-
meric optimization methods (e.g., conjugate gradient with
line search, L-BFGS) also require computing the likelihood
itself and hence the partition function Z, which is also in-
tractable. Although inference can be done approximately
using MCMC, we have found this to be too slow. Instead,
we maximize the pseudo-likelihood of the data, a widely-
used alternative (Besag 1975). If x is a possible world (rela-
tional database) and xl is the lth ground atom’s truth value,
the pseudo-log-likelihood of x given weights w is

log P ∗
w(X =x) =

n
∑

l=1

log Pw(Xl =xl|MBx(Xl)) (5)

where MBx(Xl) is the state of Xl’s Markov blanket in the
data (i.e., the truth values of the ground atoms it appears
in some ground formula with). Computing the pseudo-
likelihood and its gradient does not require inference, and
is therefore much faster. Combined with the L-BFGS opti-
mizer, pseudo-likelihood yields efficient learning of MLN
weights even in domains with millions of ground atoms
(Richardson & Domingos 2006). However, the pseudo-
likelihood parameters may lead to poor results when long
chains of inference are required.

Discriminative Weight Learning

Discriminative learning is an attractive alternative to pseudo-
likelihood. In many applications, we know a priori
which predicates will be evidence and which ones will
be queried, and the goal is to correctly predict the lat-
ter given the former. If we partition the ground atoms
in the domain into a set of evidence atoms X and a set
of query atoms Y , the conditional likelihood (CLL) of Y
given X is P (y|x) = (1/Zx) exp

(
∑

i∈FY
wini(x, y)

)

=

(1/Zx) exp
(

∑

j∈GY
wjgj(x, y)

)

, where FY is the set of
all MLN clauses with at least one grounding involving a
query atom, ni(x, y) is the number of true groundings of the
ith clause involving query atoms, GY is the set of ground
clauses in ML,C involving query atoms, and gj(x, y) = 1
if the jth ground clause is true in the data and 0 otherwise.
The gradient of the CLL is

∂

∂wi

log Pw(y|x) = ni(x, y) −
∑

y′

Pw(y′|x)ni(x, y′)

= ni(x, y) − Ew[ni(x, y)] (6)

As before, computing the expected counts Ew[ni(x, y)] is
intractable. However, they can be approximated by the
counts ni(x, y∗

w) in the MAP state y∗
w(x) (i.e., the most

probable state of y given x). This will be a good ap-
proximation if most of the probability mass of Pw(y|x)
is concentrated around y∗

w(x). Computing the gradient of
the CLL now requires only MAP inference to find y∗

w(x),
which is much faster than the full conditional inference for
Ew[ni(x, y)]. This is the essence of the voted perceptron
algorithm, initially proposed by Collins (2002) for discrim-
inatively learning hidden Markov models. Because HMMs
have a very simple linear structure, their MAP states can
be found in polynomial time using the Viterbi algorithm, a
form of dynamic programming (Rabiner 1989). The voted
perceptron initializes all weights to zero, performs T itera-
tions of gradient ascent using the approximation above, and
returns the parameters averaged over all iterations, wi =
∑T

t=1
wi,t/T . The parameter averaging helps to combat

overfitting. T is chosen using a validation subset of the train-
ing data. We have extended the voted perceptron to Markov
logic simply by replacing Viterbi with MaxWalkSAT (Singla
& Domingos 2005).

Structure Learning
In principle, the structure of an MLN can be learned or re-
vised using any inductive logic programming (ILP) tech-
nique. Since an MLN represents a probability distribution,
the best results are obtained by using pseudo-likelihood as
the evaluation function, rather than typical ILP ones like ac-
curacy and coverage (Kok & Domingos 2005). Although
this requires learning weights for each candidate structure,
we have found that this is not a bottleneck, particularly if we
initialize a candidate MLN’s weights to those of its parent.
The most expensive operation is in fact counting the num-
ber of true groundings of a candidate clause, but its cost can
be greatly reduced by the use of sampling and caching. We
have studied a number of clause construction operators and
search strategies, bearing in mind that the goal is to learn
arbitrary clauses, not just Horn ones like in most of ILP.
In Kok and Domingos (2005), we start with either a set of
unit clauses or an expert-supplied MLN, and either repeat-
edly find the best clause using beam search and add it to the
MLN, or add all “good” clauses of length l before trying
clauses of length l + 1. Candidate clauses are formed by
adding each predicate (negated or otherwise) to each current
clause, with all possible combinations of variables, subject
to the constraint that at least one variable in the new predi-
cate must appear in the current clause. Hand-coded clauses
are also modified by removing predicates. We are currently
investigating further approaches to learning MLNs, includ-
ing automatically inventing new predicates (or, in statistical
terms, discovering hidden variables).

Applications
Markov logic has been successfully applied in a variety
of areas. A system based on it recently won a com-
petition on information extraction for biology (Riedel &
Klein 2005). Cycorp has used it to make parts of the Cyc
knowledge base probabilistic (Matuszek 2006). We have
applied it to link prediction, collective classification, en-
tity resolution, social network analysis and other problems
(Richardson & Domingos 2006; Singla & Domingos 2005;
Kok & Domingos 2005; Singla & Domingos 2006b; Poon
& Domingos 2006). Applications to Web mining, activity
recognition, natural language processing, computational bi-
ology, game playing and others are under way.

The application to entity resolution illustrates well the
power of Markov logic (Singla & Domingos 2006a). En-
tity resolution is the problem of determining which obser-
vations (e.g., database records, noun phrases, video regions,
etc.) correspond to the same real-world objects, and is of
crucial importance in many areas. Typically, it is solved by
forming a vector of properties for each pair of observations,
using a learned classifier (such as logistic regression) to pre-
dict whether they match, and applying transitive closure.
Markov logic yields an improved solution simply by apply-
ing the standard logical approach of removing the unique
names assumption and introducing the equality predicate
and its axioms: equality is reflexive, symmetric and tran-
sitive; groundings of a predicate with equal constants have
the same truth values; and constants appearing in a ground

predicate with equal constants are equal. This last axiom is
not valid in logic, but captures a useful statistical tendency.
For example, if two papers are the same, their authors are the
same; and if two authors are the same, papers by them are
more likely to be the same. Weights for different instances
of these axioms can be learned from data. Inference over the
resulting MLN, with entity properties and relations as the ev-
idence and equality atoms as the query, naturally combines
logistic regression and transitive closure. Most importantly,
it performs collective entity resolution, where resolving one
pair of entities helps to resolve pairs of related entities. Ex-
periments on citation databases like Cora and BibServ.org
show that this can greatly improve accuracy, particularly for
entity types that are difficult to resolve in isolation (e.g., pub-
lication venues, where superficially very different names can
refer to the same entity, like AAAI-06 and 21st Natl. Conf.
on AI). See Singla and Domingos (2006a) for details.

The Alchemy System
The inference and learning algorithms described in the pre-
vious sections are publicly available in the open-source
Alchemy system (Kok et al. 2005). Alchemy makes it pos-
sible to define sophisticated probabilistic models with a few
formulas, and to add probability to a first-order knowledge
base by learning weights from a relevant database. It can
also be used for purely logical or purely statistical applica-
tions, and for teaching AI. From the user’s point of view,
Alchemy provides a full spectrum of AI tools in an easy-
to-use, coherent form. From the researcher’s point of view,
Alchemy makes it possible to easily integrate a new infer-
ence or learning algorithm, logical or statistical, with a full
complement of other algorithms that support it or make use
of it.

Alchemy can be viewed as a declarative programming
language akin to Prolog, but with a number of key differ-
ences: the underlying inference mechanism is model check-
ing instead of theorem proving; the full syntax of first-order
logic is allowed, rather than just Horn clauses; and, most
importantly, the ability to handle uncertainty and learn from
data is already built in.

Conclusion
Markov logic is a simple yet powerful approach to combin-
ing logic and probability in a single representation. We have
developed a series of learning and inference algorithms for
it, and successfully applied them in a number of domains.
These algorithms are available in the open-source Alchemy
system. We hope that Markov logic and its implementation
in Alchemy will be of use to AI researchers and practitioners
who wish to have the full spectrum of logical and statistical
inference and learning techniques at their disposal, without
having to develop every piece themselves.

Current and future directions of research include: extend-
ing the representation to handle continuous variables, infi-
nite domains, and uncertainty at all levels; developing fur-
ther efficient algorithms for inference and learning; learning
from incomplete data; statistical predicate invention; first-
order decision theory; various applications; and others.

Acknowledgements
This research was partly supported by DARPA grant
FA8750-05-2-0283 (managed by AFRL), DARPA contract
NBCH-D030010, NSF grant IIS-0534881, ONR grants
N00014-02-1-0408 and N00014-05-1-0313, and a Sloan
Fellowship and NSF CAREER Award to the first author.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as neces-
sarily representing the official policies, either expressed or
implied, of DARPA, NSF, ONR, or the United States Gov-
ernment.

References
Bacchus, F.; Grove, A. J.; Halpern, J. Y.; and Koller, D.
1996. From statistical knowledge bases to degrees of be-
lief. Artificial Intelligence 87:75–143.
Bacchus, F. 1990. Representing and Reasoning with Prob-
abilistic Knowledge. Cambridge, MA: MIT Press.
Besag, J. 1975. Statistical analysis of non-lattice data. The
Statistician 24:179–195.
Braz, R.; Amir, E.; and Roth, D. 2005. Lifted first-order
probabilistic inference. In Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence,
1319–1325. Edinburgh, UK: Morgan Kaufmann.
Collins, M. 2002. Discriminative training methods for hid-
den Markov models: Theory and experiments with percep-
tron algorithms. In Proceedings of the 2002 Conference on
Empirical Methods in Natural Language Processing, 1–8.
Philadelphia, PA: ACL.
Della Pietra, S.; Della Pietra, V.; and Lafferty, J. 1997.
Inducing features of random fields. IEEE Transactions on
Pattern Analysis and Machine Intelligence 19:380–392.
Dietterich, T.; Getoor, L.; and Murphy, K., eds. 2004. Pro-
ceedings of the ICML-2004 Workshop on Statistical Rela-
tional Learning and its Connections to Other Fields. Banff,
Canada: IMLS.
Friedman, N.; Getoor, L.; Koller, D.; and Pfeffer, A. 1999.
Learning probabilistic relational models. In Proceedings
of the Sixteenth International Joint Conference on Artifi-
cial Intelligence, 1300–1307. Stockholm, Sweden: Mor-
gan Kaufmann.
Gilks, W. R.; Richardson, S.; and Spiegelhalter, D. J., eds.
1996. Markov Chain Monte Carlo in Practice. London,
UK: Chapman and Hall.
Halpern, J. 1990. An analysis of first-order logics of prob-
ability. Artificial Intelligence 46:311–350.
Kautz, H.; Selman, B.; and Jiang, Y. 1997. A general
stochastic approach to solving problems with hard and soft
constraints. In Gu, D.; Du, J.; and Pardalos, P., eds.,
The Satisfiability Problem: Theory and Applications. New
York, NY: American Mathematical Society. 573–586.
Kersting, K., and De Raedt, L. 2001. Towards combin-
ing inductive logic programming with Bayesian networks.
In Proceedings of the Eleventh International Conference
on Inductive Logic Programming, 118–131. Strasbourg,
France: Springer.

Kok, S., and Domingos, P. 2005. Learning the structure
of Markov logic networks. In Proceedings of the Twenty-
Second International Conference on Machine Learning,
441–448. Bonn, Germany: ACM Press.
Kok, S.; Singla, P.; Richardson, M.; and Domingos,
P. 2005. The Alchemy system for statistical relational
AI. Technical report, Department of Computer Science
and Engineering, University of Washington, Seattle, WA.
http://www.cs.washington.edu/ai/alchemy.
Matuszek, C. 2006. Personal communication.
Muggleton, S. 1996. Stochastic logic programs. In De
Raedt, L., ed., Advances in Inductive Logic Programming.
Amsterdam, Netherlands: IOS Press. 254–264.
Neville, J., and Jensen, D. 2004. Dependency networks for
relational data. In Proceedings of the Fourth IEEE Inter-
national Conference on Data Mining, 170–177. Brighton,
UK: IEEE Computer Society Press.
Nilsson, N. 1986. Probabilistic logic. Artificial Intelligence
28:71–87.
Poon, H., and Domingos, P. 2006. Sound and efficient in-
ference with probabilistic and deterministic dependencies.
In Proceedings of the Twenty-First National Conference on
Artificial Intelligence. Boston, MA: AAAI Press. This vol-
ume.
Rabiner, L. R. 1989. A tutorial on hidden Markov models
and selected applications in speech recognition. Proceed-
ings of the IEEE 77:257–286.
Richardson, M., and Domingos, P. 2006. Markov logic
networks. Machine Learning 62:107–136.
Riedel, S., and Klein, E. 2005. Genic interaction extraction
with semantic and syntactic chains. In Proceedings of the
Fourth Workshop on Learning Language in Logic, 69–74.
Bonn, Germany: IMLS.
Singla, P., and Domingos, P. 2005. Discriminative training
of Markov logic networks. In Proceedings of the Twen-
tieth National Conference on Artificial Intelligence, 868–
873. Pittsburgh, PA: AAAI Press.
Singla, P., and Domingos, P. 2006a. Entity resolution with
Markov logic. Technical report, Department of Computer
Science and Engineering, University of Washington, Seat-
tle, WA.
Singla, P., and Domingos, P. 2006b. Memory-efficient
inference in relational domains. In Proceedings of the
Twenty-First National Conference on Artificial Intelli-
gence. Boston, MA: AAAI Press. This volume.
Wasserman, S., and Faust, K. 1994. Social Network Anal-
ysis: Methods and Applications. Cambridge, UK: Cam-
bridge University Press.
Wellman, M.; Breese, J. S.; and Goldman, R. P. 1992.
From knowledge bases to decision models. Knowledge En-
gineering Review 7.

