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1 The Knowledge Gap

Data mining has made tremendous progress in the last ten years. However, a large gap remains between the
results a data mining system can provide and taking actions based on them. This gap must be filled by human
work, which greatly limits the efficiency of the overall process and the scope of applicability of data mining.
For example, data mining can reveal that a purchase of diapers at a supermarket is often accompanied by
a purchase of beer, but it cannot hypothesize that the buyer is probably a new father, and propose other
products appropriate to this demographic. In general, decision-making involves a chain of inferences, and,
while we often have enormous quantities of data relevant to some inference steps, allowing us to automate
them by learning from the data, we often have no data at all relevant to other steps, and these become the
labor-intensive bottleneck. Clearly, the potential benefits of shrinking this “knowledge gap” could greatly
exceed the benefits obtainable from further improving the parts of the process that are already efficient.

Another area where lack of portable, machine-understandable knowledge has a high cost is data pre-
processing. It is by now a truism in the data mining communitythat most of the cost of a mining project is
in data gathering, integration, cleaning, transformation, etc.; more generally, in setting up the problem in a
way that can be solved by our data mining tools (classification, clustering, etc.). Despite this, progress in
this area continues to be sparser than progress in further refining the modeling tools. A large part of this is
due to the fact that modeling tools can be very general, making them attractive targets for research, while
pre-processing tends to be very domain-specific. In effect,large quantities of precious human knowledge
are incorporated into the pre-processing in a data mining project, but they are encoded in opaque scripts and
SQL commands, and in the the next project we have to start again from scratch. Ideally, this knowledge
would be encoded in a transparent, modular form that could bereadily reused.

Even in the modeling phase, where the state of the art is most advanced, the use of knowledge remains
effectively the bottleneck. Data mining efforts are seldomsuccessful on the first attempt; a cycle of min-
ing, examining the results and re-doing the mining with an improved model is required. Effectively, the
role of this cycle is to incorporate the knowledge of the human data miner into the model. The process is
iterative because it is much easier for humans to call up knowledge “on demand,” in response to the results
and failures of the data mining system, than to provide all the necessary knowledgea priori. However, as
advanced as many tools are from a statistical and computational perspective, they do not provide humans
with an easy interface to do this. Typically, knowledge is implicitly incorporated by trying out many dif-
ferent data mining algorithms, variations of them, parameter settings, combinations of techniques, etc. As
a result, data mining requires experts with advanced degrees, which limits its diffusion. Allowing users to
instead state their knowledge (or hypotheses) explicitly,for example by correcting the output and providing
a justification, would improve ease of use, productivity, and reusability.
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In sum, data mining as practiced today is mostly knowledge-poor; current tools do not facilitate the
incorporation and reuse of knowledge, and this is perhaps the single greatest barrier to progress. While
a number of previous research strands provide promising starting points to address this problem, much
remains to be done. At the opposite end of the spectrum from data mining (and preceding it in time), expert
systems useonly manually encoded knowledge. They have not found widespreaduse because the cost of
manually acquiring all the knowledge needed for useful results is too large, and even then the resulting
inference is typically too brittle (Scott et al., 1991; Marcus, 1989; Henrion, 1987). Work on knowledge-
intensive learning and theory revision seeks to strike a balance between the two, using data to refine an initial
knowledge base, but still suffers from using logic as the representation language and the resulting brittleness
(e.g., Bergadano and Giordana (1988); Pazzani and Kibler (1992); Ourston and Mooney (1994); Towell and
Shavlik (1994)). Work on using knowledge to constrain association rule mining is useful, but limited in
scope, as is work on inputting knowledge into the data miningsystem to discover interesting ways in which
the data contradicts it (e.g., Srikant et al. (1997); Padmanabhan and Tuzhilin (1998); see also Section 7.1 in
Domingos (1999)).

It is well known that purely empirical induction is impossible; some amount of knowledge must be
combined with the data to produce non-trivial results. It isa remarkable fact that very weak knowledge, of
the kind implicitly incorporated into standard machine learning algorithms, suffices to obtain useful results
in many domains, when combined with substantial human work.But further automating the data mining
process requires making it more knowledge-rich. Inductionis effectively a way to leverage knowledge
into more knowledge. It is a much more powerful lever than deduction, which can only make explicit the
knowledge that is already implicitly in the data and knowledge base. But it is still the case that the more
and better knowledge we leverage, the more and better knowledge we should be able to obtain as a result.
It also follows that we should focus on obtaining the knowledge that gives us the greatest leverage for the
least acquisition cost. In particular, the most useful knowledge complements what is easily mined from the
available data, rather than repeating it; for example, knowledge relating observed variables to unobserved
but important ones, or knowledge that is difficult to construct by greedy search.

At the University of Washington, we have recently begun to develop representations, algorithms and
software tools to address this problem. What follows is a brief overview of them, an agenda for further
work, and some discussion.

2 Markov Logic

Knowledge-rich data mining begins with representations that facilitate communication of knowledge be-
tween human and computer, and manipulation of knowledge by the computer. Unfortunately, there is a
tension between these two desiderata. Languages for human use should be as rich as possible; the ideal lan-
guage is natural language. But rich languages are difficult and inefficient to process automatically; reliable
extraction of knowledge from natural language is beyond thestate of the art. Most data mining systems
use representations at the level of propositional logic, but this is clearly too limited, requiring extremely
cumbersome representation of even simple regularities. (For example, in a domain withn objects, the state-
ment that a relation is transitive requiresn3 propositions to encode, and does not generalize to domains with
different objects.) First-order logic would seem to provide a good compromise: it is expressive enough to
compactly represent much of what can be said in natural language, inference in it is a well-researched sub-
ject, and it is the basis for most expert systems, theory revision systems, and inductive logic programming.
Unfortunately, it is too brittle. Knowledge, both hand-coded and mined from data, is imperfect, uncertain,
and often contradictory; first-order logic is incompatiblewith all of these. Clearly, at a minimum we require
a combination of the expressiveness of first-order logic with the robustness of probabilistic representations
like Bayesian networks and Markov networks.
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Figure 1: Markov network obtained by applying the formulas∀x Smokes(x) ⇒ Cancer(x) and
∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y)) to the constantsAnna(A) andBob(B).

While combining logic and probability is a subject with a long history, it is only recently that practical
realizations of this have begun to appear (e.g., Wellman et al. (1992); Muggleton (1996); Kersting and De
Raedt (2001); Friedman et al. (1999); Taskar et al. (2002), etc.). One of the most powerful approaches to
date is Markov logic, a simple but general combination of first-order logic and Markov networks (Domingos
et al., 2006). A first-order knowledge base can be viewed as a set of hard constraints on the possible states
of the world: if a state violates even one formula, it has zeroprobability. The basic idea in Markov logic is
to soften these constraints: when a world violates one formula it is less probable, but not impossible. The
fewer formulas a world violates, the more probable it is. Each formula has an associated weight that reflects
its strength as a constraint: the higher the weight, the lesslikely is a state that violates the formula, other
things being equal.

Thus, syntactically, Markov logic is simply first-order logic with a weight attached to each formula.
Semantically, it can be viewed as a template for constructing Markov networks.1 In a Markov network, the
probability of a state is a normalized exponentiated weighted sum of features of the state:
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1
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(

∑

i

wifi(x)

)

(1)

Together with a set of constants representing objects in thedomain, a set of formulas in Markov logic
defines a Markov network over Boolean variables. Each possible grounding of each predicate appearing in
the formulas is one such variable, and each possible grounding of each formula (or clause) is a feature (with
value 1 if the ground clause is true in the state, and 0 otherwise). The weight of a feature is the weight of the
formula that originated it. For example, the formulas∀xSmokes(x) ⇒ Cancer(x) (smoking causes cancer)
and∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y)) (friends have similar smoking habits) applied to
the constantsAnna andBob (or A andB for short) yield the Markov network in Figure 1. Its featuresinclude
Smokes(Anna) ⇒ Cancer(Anna), etc. Two nodes have an arc between them (and thus depend directly
on each other) if the corresponding predicates appear together in some formula. Notice that, although the
two formulas above are false as universally quantified logical statements, as weighted features of a Markov
network they capture valid statistical regularities, and in fact represent a standard social network model.

We have developed a series of efficient algorithms for inference and learning in Markov logic. These
algorithms build on the state of the art in satisfiability testing, Markov chain Monte Carlo, inductive logic

1Markov networks are also known as, or closely related to, Markov random fields, maximum entropy models, Gibbs distri-
butions, exponential models, and log-linear models; and they have Boltzmann machines, conditional random fields, and logistic
regression as special cases.
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programming, and numeric optimization. Further details can be found in Domingos et al. (2006). Imple-
mentations of the algorithms are available in the open-source Alchemy package (Kok et al., 2006).

We have successfully used Alchemy for knowledge-rich data mining in a number of domains (Domingos
et al., 2006). Typically, the process begins by writing downformulas representing known or hypothesized
regularities in the domain. We have both encoded knowledge directly in logic and manually converted to
logic knowledge contributed by others in natural language.Unlike in a conventional knowledge base, these
formulas need not be always true or consistent with each other; to be useful, it suffices that they capture
some of the dependency structure of the domain. In fact, manycommonly used statistical models are easily
represented as simple formulas in Markov logic, which both makes explicit the assumptions they encode
and facilitates combining them with further knowledge. Weights can be hand-coded, learned from data, or
a combination of the two. Similarly, formulas can be revisedby hand, automatically, or both. Alchemy
can also be used to perform data integration, by introducingthe equality predicate and related axioms. In
our experience, the use of Alchemy greatly increases the speed with which data mining applications can be
developed.

3 An Agenda for Knowledge-Rich Data Mining

Markov logic and Alchemy form a starting point for a more knowledge-rich approach to data mining. Here
we sketch what such an approach might look like, and some of the research issues involved.

Acquiring knowledge. If we accept the premise that starting from explicitly formulated knowledge is use-
ful for data mining, acquiring this knowledge becomes an important goal. We envisage this being pursued
in multiple ways:

By direct input. Much knowledge can be acquired by direct entry by members of the relevant organiza-
tion, the scientific community, or Web users at large. In turn, this knowledge can be vetted, applied
and refined by further members of the community. The success of knowledge-sharing Web sites
shows the extent to which this is possible, and facilitated by the Internet; the key going forward
is to obtain knowledge in more structured form than is typical today. This can be done in a range
of ways, from interfaces that directly translate their input into logic, to near-natural language with
restricted vocabulary and grammar, to a more-knowledgeable subset of contributors codifying the
contributions of others.

By extraction from text and the Web. While text mining has long been a focus of research, text has
generally been treated as purely a source of raw, low-level data. However, text is also an excellent
direct source of knowledge at all levels of generality. While extracting knowledge from (say)
textbooks and manuals is a difficult problem, Markov logic makes it a more realistic prospect,
because it allows knowledge to be noisy and imperfect. We arebeginning to work on this problem.

By use. Many opportunities for acquiring knowledge arise once the mined knowledge is deployed. The
users in the field routinely notice what it does wrong, how it could be corrected, and what knowl-
edge is missing. Unfortunately, today there is generally nosimple process by which these insights
can be systematically incorporated into the knowledge base, and as a result they are often lost. This
can be overcome by having data mining systems that are alwaysonline, continually incorporating
not only new data but also new hypotheses, for example in the form of Markov logic formulas that
explain a mistake made by the system.

Refining knowledge. The core of knowledge-rich data mining is providing a richerinterface between the
data mining system and its users. By allowing the user to explicitly make new statements or modify
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previous ones in response to the results of mining, we can reduce the number of mine-refine loops
required to reach good results, and reach better results in less time. Further, by allowing the user to
easily reformulate, consolidate and trim the results of mining, these can be better integrated with the
existing knowledge, and made more stable, robust, and portable.

Reusing knowledge.Data mining projects today are typically standalone; the results of a project are never
reused, and each new project starts from scratch (modulo experience and perhaps some supporting code).
This significantly limits the depth and breadth of knowledgethat can be acquired. One of our goals with
Alchemy is to support the development of reusable knowledgebases in Markov logic. Given such a
repository, the first step of a data mining project becomes the selection of relevant knowledge. This
may be used as is or manually refined. A new knowledge base is initiated by writing down plausible
hypotheses about the new domain. The core process of inducing new knowledge for the task can now
start from a much stronger base. Formula weights and structure for the supporting knowledge bases
may be adjusted based on data from the new task. Over time, more knowledge becomes available, and
existing knowledge is refined and specialized to different (sub)domains.

4 Objections

A number of objections can be raised to the notion that knowledge-rich data mining is necessary or useful.
This section briefly addresses the main ones.

With enough data, you don’t need knowledge.The amount of data required to sample an instance space
with constant density increases exponentially with its dimensionality. Thus, in the high-dimensional
problems that are the main focus of data mining, the asymptote in the learning curve may not be reached
even with extremely large quantities of data. Even if sufficient data is available, the computational cost of
exploiting it will often be too high. In particular, there isa trade-off between fast, greedy search, which is
limited in the patterns it can discover, and more exhaustivesearch, which is typically too expensive. The
use of knowledge helps overcome this tradeoff, by focusing the search in promising areas and providing
component patterns that would be difficult to find greedily. Most of all, as mentioned earlier, in many
applications the data available only covers some parts of the inference chain from evidence to actions,
and the only alternative to incorporating knowledge is human intervention.

Knowledge-rich data mining doesn’t scale.If knowledge is used to constrain the search for new patterns,
it increases rather than reduces the scalability of learning. While inference in a language that combines
first-order logic and probability can be expensive, state-of-the-art satisfiability solvers like the one used
in Alchemy can solve hard problems with hundreds of thousands to millions of variables in minutes.
Weighted satisfiability testing performs probabilistic inference (finding the most likely state given ev-
idence) no less efficiently than the purely logical case (andpotentially more, if some previously hard
constraints are softened). In many cases, the knowledge relevant to a specific problem is a small subset
of the knowledge available, and the problem can be divided into retrieving this knowledge, which can
be done in linear time, and using it, where the higher cost of inference is incurred. While there is much
work to do in further scaling inference and learning in languages like Markov logic, the state of the art is
already sufficient for many applications.

We’ll never be able to acquire enough knowledge.The goal of knowledge-rich data mining is not to pro-
vide a priori all the knowledge that might be required to preprocess data,interpret and refine results,
turn them into actions, etc. Rather, it is to support a feedback loop by which a small amount of initial
knowledge can be bootstrapped into more knowledge by mining, which can in turn be complemented
by more human-supplied knowledge to allow further mining, etc. Neither pure manual acquisition nor
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purely empirical induction suffice to obtain all the knowledge required for decision-making in complex
domains. Rather, a fine-grained, iterative combination of the two offers the best chances of success.

Some knowledge is hard to make explicit.Humans can perform many tasks without being able to explain
how they do it, and in many cases data mining can learn to perform them by observing the human’s
input-output behavior. However, even in this case there is often much relevant knowledge that can be
easily stated explicitly, and will greatly help the data mining process. For example, digit recognition is
greatly facilitated by explicitly incorporating our knowledge that digits are invariant to translation and
scaling, instead of requiring the system to learn this at thesame time it learns the digits’ structure. Also,
even when humans have difficulty explaining how they performa task in general, they often find it quite
easy to correct mistakes in specific instances, and to explain what went wrong. Incorporating this advice
and generalizing it can greatly aid learning.

5 Conclusion

We can envisage a time when knowledge-rich data mining is therule rather than the exception. Instead
of each new data mining project starting from scratch, it will build on the large repository of knowledge
accumulated by previous projects and by direct acquisitionfrom humans. Because of the knowledge it can
draw on, a data mining system will be able to discover deeper patterns, and directly connect them to the
actions that should result. The new knowledge discovered will in turn be added to the repository, providing
a better starting point for future data mining efforts.
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