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Abstract

Combining first-order logic and probability has
long been a goal of Al. Markov logic (Richard-
son & Domingos, 2006) accomplishes this by at-
taching weights to first-order formulas and view-
ing them as templates for features of Markov
networks. Unfortunately, it does not have the
full power of first-order logic, because it is only
defined for finite domains. This paper extends
Markov logic to infinite domains, by casting it
in the framework of Gibbs measures (Georgii,
1988). We show that a Markov logic network
(MLN) admits a Gibbs measure as long as each
ground atom has a finite number of neighbors.
Many interesting cases fall in this category. We
also show that an MLN admits a unique measure
if the weights of its non-unit clauses are small
enough. We then examine the structure of the set
of consistent measures in the non-unique case.
Many important phenomena, including systems
with phase transitions, are represented by MLNs
with non-unique measures. We relate the prob-
lem of satisfiability in first-order logic to the
properties of MLN measures, and discuss how
Markov logic relates to previous infinite models.

Introduction

works, an approach known as knowledge-based model con-
struction (Wellman et al., 1992). More recently, many com-
binations of (subsets of) first-order logic and probability
have been proposed in the burgeoning field of statistical
relational learning (Dietterich et al., 2003), includingp-
abilistic relational models (Friedman et al., 1999), sassh

tic logic programs (Muggleton, 1996), Bayesian logic pro-
grams (Kersting & De Raedt, 2001), and others.

One of the most powerful representations to date is Markov
logic (Richardson & Domingos, 2006). Markov logic is

a simple combination of Markov networks and first-order
logic: each first-order formula has an associated weight,
and each grounding of a formula becomes a feature in a
Markov network, with the corresponding weight. The use
of Markov networks instead of Bayesian networks obvi-
ates the difficult problem of avoiding cycles in all possi-
ble groundings of a relational model (Taskar et al., 2002).
The use of first-order logic instead of more limited repre-
sentations (e.g., description logics, Horn clauses) mikes
possible to compactly represent a broader range of depen-
dencies. For example, a dependency between relations like
“Friends of friends are (usually) friends” cannot be speci-
fied compactly in (say) probabilistic relational modelst bu
in Markov logic it suffices to write down the corresponding
formula and weight. Markov logic has been successfully
applied in a variety of domains (Domingos et al., 2006),
and open source software with implementations of state-of-
the-art inference and learning algorithms for it is avdiab
(Kok et al., 2006).

One limitation of Markov logic is that it is only defined for

Most Al problems are characterized by both uncertaintygye qomajns. Thus the question of how far it is possible

f"‘”d ct?mpt)lex sc:rucltutr.e, n tC'e f‘(;j!”” OL n:rl].lltlple_lnteract— to combine the full power of first-order logic and graphical
INg objects and refations. Handing both requIres comsy, ;40\ remains open. This paper takes a further step in this
bining the capabilities of probabilistic models and first-

der loaic. At s t hi this h | hi direction by extending Markov logic to infinite domains.
order logic. empts 1o achieve Inis have a long Nis-q, - yeatment is based on the theory of Gibbs measures
tory, and have gathered steam in recent years. Withi

Al Nilsson (1986) is an early example. Bacchus (1990)r(Georgu, 1988). Gibbs measures are infinite-dimensional

‘extensions of Markov networks, and have been studied ex-
Halpern (1990) and cpworkers (e.g., Bacckual. (1.996)) tensively by statistical physicists and mathematicalstat
produced a substantial body of relevant theoretical work

‘cians, due to their importance in modeling systems with

Around the same time, several authors began using IOgKp‘hase transitions. We begin with some necessary back-
programs to compactly specify complex Bayesian net-



ground on first-order logic and Gibbs measures. We therandclauses inB(C) as needed.

define MLNs over infinite domains, state sufficient condi- , . I .
. . . " An interpretationis a mapping between the constant, pred-
tions for the existence and uniqueness of a probability mea-

sure consistent with a given MLN, and examine the impor-'cate and function symbols in the language and the objects,

. : functions and relations in the domain. InHerbrand in-
tant case of MLNs with non-unique measures. Next, we, . : .

: -terpretationthere is a one-to-one mapping between ground
establish a correspondence between the problem of satis-

fiability in logic and the existence of MLN measures with erms and objects (i.e., every object is represented by some

) . . . : round term, and no two ground terms correspond to the
certain properties. We conclude with a discussion of th . : o .

. . S . . . .~ same object). Anodelor possible worldspecifies which
relationship between infinite MLNs and previous infinite

. relations hold true in the domain. Together with an inter-
relational models. L . .
pretation, it assigns a truth value to every atomic formula,
and thus to every formula in the knowledge base.
2 Background
2.2 Gibbs Measures
2.1 First-Order Logic
Gibbs measures are infinite-dimensional generalizatibns o
A first-order knowledge basis a set of sentences or for- Gibbs distributions. A Gibbs distribution, also known as a
mulas in first-order logic (Genesereth & Nilsson, 1987).log-linear model or exponential model, and equivalent un-
Formulas are constructed using four types of symbols: conder mild conditions to a Markov network or Markov ran-
stants, variables, functions, and predicates. Constant sy dom field, assigns to a statethe probability
bols represent objects in the domain of discourse (e.g-, peo 1
ple: Anna, Bob, Chris, etc.). Variable symbols range over P(X=x) = 7 Z wi fi(x) @)
the objects in the domain (or a subset of it, in which case : ! . .
. Wwherew; is any real numberf; is an arbitrary function or
they aretyped. Function symbols (e.gMother0f) repre- . L .
: : : . featureof x, andZ is a normalization constant. In this pa-
sent mappings from tuples of objects to objects. Predicate

. . i per we will be concerned exclusively with Boolean states
symbols represent relations among objects (:g.ends) and functions (i.e., states are binary vectors, correspond
or attributes of objects (e.gSmokes). A termis any ex- o y ! SP

. ) : ing to possible worlds, and functions are logical formulas)
pression representing an object. It can be a constant,-a var, . . . ;
. . arkov logic can be viewed as the use of first-order logic
able, or a function applied to a tuple of terms. For example . - . .
o to compactly specify families of these functions (Richard-
Anna, x, andGreatestCommonDivisor(x,y) are terms. . )
. . . .~ . son & Domingos, 2006). Thus, a natural way to generalize
An atomic formulaor atomis a predicate symbol applied .. .~ S . .
. it to infinite domains is to use the existing theory of Gibbs
to a tuple of terms (e.gEriends(x, MotherOf(Anna))). . :
. . ) measures (Georgii, 1988). Although Gibbs measures were
A ground termis a term containing no variables. gkound

atomor ground predicatés an atomic formula all of whose primarily developed to model regular lattices (e.g., ferro

arguments are ground terms. Formulas are recursively Conrpagnetlc materials, gas/liquid phases, etc.), the theory i

. . : .~ —_quite general, and applies equally well to the richer struc-
structed from atomic formulas using logical connectives . . .
o o ; . . “tures definable using Markov logic.
and quantifiers. Apositive literalis an atomic formula;
anegative literalis a negated atomic formula. dlauseis  One problem with defining probability distributions over
a disjunction of literals. Every first-order formula can be infinite domains is that the probability of most or all worlds
converted into an equivalent formulapmenex conjunctive  will be zero. Measure theory allows us to overcome this

normal form Q1 ... Qx, C(z1,...,x,), whereeacld) is  problem by instead assigning probabilities to sets of weorld
a quantifier, ther, are the quantified variables, any. . .) (Billingsley, 1995). Let) denote the set of all possible
is a conjunction of clauses. worlds, and€ denote a set of subsets@f £ must be ar-

algebra, i.e., it must be non-empty and closed under com-
plements and countable unions. A function £ — R is

said to be grobability measurever (2, &) if u(E) > 0
foreveryE € &, u(Q) = 1, andu(U E:) = > u(E;),
where the union is taken over any countable collection of
disjoint elements of .

The Herbrand universeU(C) of a set of clause€ is
the set of all ground terms constructible from the func-
tion and constant symbols i@ (or, if C contains no con-
stants, some arbitrary constant, e.g), If C contains
function symbols,U(C) is infinite. (For example, ifC
contains solely the functiod and no constantstJ(C)

= {£(8),£(£(4)),£(£(£(4))),...}.) Some authors define A related difficulty is that in infinite domains the sum in
the Herbrand baseB(C) of C as the set of all ground Equation 1 may not exist. However, the distribution of any
atoms constructible from the predicate symbol€drand finite subset of the state variables conditioned on its com-
the terms inU(C). Others define it as the set of all ground plement is still well defined. We can thus define the infinite
clauses constructible from the clause€rand the terms distribution indirectly by means of an infinite collectioh o

in U(C). For convenience, in this paper we will define it finite conditional distributions. This is the basic idea in
as the union of the two, and talk about #®@ms inB(C) Gibbs measures.



Let us introduce some notation which will be used through-Definition 2. Letv® be a Gibbsian specification. Let

out the paper. Consider a countable set of variaBles
{X1,Xs,...}, where eachX; takes values i{0,1}. Let

X be a finite set of variables iff, andSx = S\ X. A
possible worldv € Q2 is an assignment to all the variables
in S. Letwx denote the assignment to the variableXin
underw, andwy, the assignment t&;. Let X denote the
set of all finite subsets d8. A basic eveniX = x is an
assignment of values to a finite subset of variaBles X,
and denotes the set of possible worldse 2 such that
wx = x. LetE be the set of all basic events, and et

be a probability measure over the measurable sg&ze)
such that, for everX € X andE € &, u(E) = pys(E).
Then the specification® is said to admit theGibbs mea-
sureu. Further,G(y?®) denotes the set of all such measures.

In other words, a Gibbs measure is consistent with a Gibb-
sian specification if its event probabilities agree withgho
obtained from the specification. Given a Gibbsian speci-
fication, we can ask whether there exists a Gibbs measure

consistent with it [G(v®)| > 0), and whether it is unique
P

be the set obtained by taking complements and countabléd(7”)| = 1). In the non-unique case, we can ask what

unions of sets irE. By definition, £ is ac-algebra. An
element® of £ is called areventand€ is theevent space
The following treatment is adapted from Georgii (1988).

Definition 1. Aninteraction potentia{or simply apoten-
tial) is a family® = (®v )vex Of functionsby : V. — R
such that, for allX € X andw € 2, the summation

Hy(w)= Y.  dv(wy) 2

VeEX , VNX£0

is finite. Hy is called the Hamiltonian iiX for .

Intuitively, the HamiltonianHy includes a contribution
from all the potentialsby, which share at least one vari-
able with the seK. Given an interaction potentidl and a
subset of variableX, we define the conditional distribu-
tion vx (X|Sx) as

exp(H3 (x,y))

> exp(HR(x,))
xeDom(X)
where the denominator is called tpartition functionin X
for ® and denoted by’y, andDom(X) is the domain of

%X =x|Sx =y) = ®)

the structure ofj (v®) is, and what the measures in it repre-
sent. We can also ask whether Gibbs measures with specific
properties exist. The theory of Gibbs measures addresses
these questions. In this paper we apply it to the case of
Gibbsian specifications defined by MLNs.

3 Infinite MLNs

3.1 Definition

A Markov logic network (MLN) is a set of weighted first-
order formulas. As we saw in the previous section, these
can be converted to equivalent formulas in prenex CNF.
We will assume throughout that all existentially quantified
variables have finite domains. While this is a significant re-
striction, it still includes essentially all previous piattilis-

tic relational representations as special cases. Exiatignt
guantified formulas can now be replaced by finite disjunc-
tions. By distributing conjunctions over disjunctionseey
prenex CNF can now be converted to a quantifier-free CNF,
with all variables implicitly universally quantified.

X. Equation 3 can be easily extended to arbitrary eventd he Herbrand universtJ(L) of an MLN L is the set of

E € & by definingys (E|Sx) to be non-zero only when
E is consistent with the assignment #x%. Details are

all ground terms constructible from the constants and func-
tion symbols in the MLN. The Herbrand baBgL) of L is

skipped here to keep the discussion simple, and can b&e set of all ground atoms and clauses constructible from

found in Georgii (1988). The family of conditional distri-
butionsy® = (135 )xex as defined above is calledzibb-
sian specificatior}

Given a measurg over (2, £) and conditional probabili-
tiesysx (E[Sx), let the compositiomyx be defined as

wkE) = [ okEsom @
Dom(Sx)

wy% (E) is the probability of event according to the con-

ditional probabilitiesyx (E|Sx ) and the measureon Sx.

We are now ready to define Gibbs measure.

For physical reasons, this equation is usually written waith
negative sign in the exponent, i.exp|[—Hx (w)]. Since this is
not relevant in Markov logic and does not affect any of theiltss
we omit it.

2Georgii (1988) defines Gibbsian specifications in terms ef un
derlying independent specifications. For simplicity, weuase
these to be equidistributions and omit them throughoutphfser.

the predicates i, the clauses in the CNF form @&f, and

the terms inU(L), replacing typed variables only by terms
of the corresponding type. We assume Herbrand inter-
pretations throughout, unless different terms are expfici
stated to represent the same object (&gleft(up(x)) =
up(left(x))). We call thesegquasi-Herbrandinterpreta-
tions. We are now ready to formally define MLNs.

Definition 3. A Markov logic network (MLN)L is a (fi-
nite) set of pairy(F;, w;), whereF; is a formula in first-
order logic andw; is a real number.L defines a count-
able set of variablesS and interaction potentialb™ =
(P )xex, X being the set of all finite subsets 8f as
follows:

1. S contains a binary variable for each set of atoms in
B(L) whose corresponding arguments represent the
same objects. The value of this variable is 1 if these
(equivalent) atoms are true, and 0 otherwise.



2. ¥ (x) = Y, w;fi(x), where the sum is over the
clausesC; in B(L) whose arguments are exactly the
elements oX. If F;(; is the formula inL. from which
C; originated, andF;(;) gave rise ton clauses in the
CNF form ofL, thenw; = w;/n. f;(x) =1if Cjis
true in worldx, and f; = 0 otherwise.

Let theneighborsN(X) of a ground atonX be the atoms
that appear with it in some ground clause. Edr to cor-

some measure.. It is useful to first gain some intu-
ition as to why this might not always be the case. Con-
sider a game where a person chooses a random natural
number. Our goal is to assign probabilities to the corre-
sponding events. This game can be expressed as a very
simple MLN, containing the two formulasn Chosen(n)
andVn,n’ Chosen(n) A Chosen(n’) = n = n’. Letyu

be a measure admitted by the corresponding specification,
and letw,, denote the event that is the chosen number.

respond to a well-defined Gibbsian specification, it sufficesThen, in the limit of infinite weights, one would expect that

that, for allX € B(L), |N(X)| < oco. This ensures that
the sum in Equation 2 remains finite. A sufficient condition
for this is that all clauses he-determinate

Definition 4. A clause isr-determinatéf all the variables
with infinite domains it contains appear in all literalsAn
MLN is o-determinate if all its clauses are-determinate.

Notice that this definition does not require that all literal

w(Jwn) = 1, butin factu(Jwn) = > p(w,) = 0. The

first equality holds because thsg,’s are disjoint, and the
second one because eaghhas zero probability of occur-
ring by itself. But by definition:(2) = p(Jwn) = 1, s0O
there is a contradiction, and the specification does not ad-
mit a measuré. The reason the MLN above fails to have

a measure is that the formulas are not local, in the sense
that the truth value of an atom depends on the truth values

have the same infinite arguments; for example, the clausgs infinite others. Locality is in fact the key property for

Q(x,y) = R(f(x), g(x,y)) iso-determinate. In essence,

the existence of a consistent measure, afdkterminacy

determinacy requires that the neighbors of an atom be despsyres it (in addition to ensuring that the specification is
fined by functions of its arguments. Because functions cagsippsian).

be composed indefinitely, the network can be infinite; be-

cause first-order clauses have finite lengtideterminacy
ensures that neighborhoods are still finite.

A o-determinate MLN defines a Gibbsian specification.
Given such an MLNL, the distributiom of a set of vari-
ablesX € X conditioned on its complemeBtx is given

by

exp (Zj wj fi(x, y))

Zx’eDom(X) exp (Z] w; f5(x, Y))

where the sum is over the clausesBi{L) that contain at
least one element &X, and f;(x,y) = 1 if clauseC} is
true under the assignmeft, y) and 0 otherwise. The cor-
responding Gibbsian specification is denotedyby

X (X=x|Sx=y) =

Formally, a functionf : 2 — R is said to bdocal if f only
depends on a finite subséte X'. In fact, the weaker prop-
erty of quasilocalitysuffices for the existence of a Gibbs
measure (Georgii, 1988).

Definition 5. A functionf : © — R is quasilocalif there
exists a sequenag,,),>1 of local functionsf,, such that
lim, o ||f — fnll = 0, where||.|| is sup-norm. A Gibb-
sian specificationy = (vx)xex IS quasilocal if eachyx
is quasilocal.

Lemma. LetL be ac-determinate MLN, ang" the cor-
responding specification. Ther is quasilocal.

Proof. Each Hamiltonian/% is local (and hence quasilo-
cal), since byo-determinacy it depends only on a fi-

If the MLN contains no function symbols, Definition 3 re- nita number of potentialg¥. By Proposition 2.24(b) in
duces to the one in Richardson and Domingos (2006), Wit eorgii (1988), since all the Hamiltonians are quasilocal,
C being the constants appearing in the MLN. This can bgpe corresponding specificatio is also quasilocal. O

easily seen by substituting = S in Equation 5. Notice
it would be equally possible to define features for conjunc

tions of clauses, and this may be preferable for some appli-

cations.

3.2 Existence

Let L be ao-determinate MLN. The focus of this sec-
tion is to show that its specification™ always admits

3This is related to the notion of determinate clausi logic
programming. In a determinate clause, the grounding of &mie v
ables in the head determines the grounding of all the vaasibl
the body. In infinite MLNs, any literal in a clause can be inéer

from the others, not just the head from the body, so we require

that the (infinite-domain) variables in each literal detgmnthe
variables in the others.

We now state the theorem for the existence of a measure
admitted byy™.

Theorem 1. Let L be ao-determinate MLN, and™
(v%)xex be the corresponding Gibbsian specification.
Then there exists a measyreover (2, £) admitted byy~,
i.e.,|G(yM)| > 1.

Proof. To show the existence of a measurewe need to
prove the following two conditions:

1. The net(v%(X|Sx))xex has a cluster point with re-
spect to the weak topology df, £).

4See Example 4.16 in Georgii (1988) for a detailed proof.



2. Each cluster point ofyx (X|Sx))xex belongs to  The oscillation of a function is thus simply the difference

L . ..
G(v"). between its extreme values. We can now state a sufficient
It is a well known result that, if all the variableX; have  condition for the existence of a unique measure.

finite domains, then the net in Condition 1 has a clustefrheorem 2. Let L be ao-determinate MLN with interac-

point (see Section 4.2 in Georgii (1988)). Thus, since alkjy, potential®” and Gibbsian specification™ such that
the variables in the MLN are binary, Condition 1 holds.

Further, sincey" is quasilocal, every cluster poiptof the sup Z (1C;] — D|w;| < 2 @)
net(v% (X|Sx))xex belongs tag(y¥) (Comment 4.18 in X, €8 ! !
Georgii (1988)). Therefore, Condition 2 is also satisfied.

Hence there exists a measuyreonsistent with the specifi- \yhereC(X;) is the set of ground clauses in whigh ap-

CjEC(Xi)

cation", as required. L) pears,|C;| is the number of ground atoms appearing in
_ clauseC;, andw; is its weight. Then/™ admits a unique
3.3 Uniqueness Gibbs measure.

This section addresses the question of under what condi- - )
tions an MLN admits a unique measure. Let us first gainP"00f- Based on Theorem 8.7 and Proposition 8.8 in
some intuition as to why an MLN might admit more than Georgii (1988), a sufficient condition for uniqueness is
one measure. The only condition an MLIN imposes L

on a measure is that it should be consistent with the lo- S Z (V] =1)é(Py) < 2 (8)

cal conditional distributions%. But since these distri- VA

butions are local, they do not determine the behavior OfRewritin this condition in terms of the ground formulas in
the measure at infinity. Consider, for example, an infinite 9 9

. ) . . . . which a variableX; appears (see Definition 3) yields the
two-dimensional lattice, where neighboring sites are moreOlesireol result -
likely to have the same truth value than not. This can be '
represented by formulas of the forvix S(x) = S(n(x)),
wheren € {up,down,left,right}. The higher the Notethat, as alluded to before, the above condition does not
weightw of these formulas, the more likely neighbors are depend on the weight of the unit clauses. This is because
to have the same value. This MLN has two extreme statedor a unit clausgC;| — 1 = 0. If we define the interac-
one wherevx S(x), and one wher&x —S(x). Let us call  tion between two variables as the sum of the weights of all
these states andw-,, and letw’ be a local perturbation of the ground clauses in which they appear together, then the
w (i.e.,w’ differs fromw on only a finite number of sites). above theorem states that the total sum of the interactions
If we draw a contour around the sites wherfeandw differ, of any variable with its neighbors should be less than 2 for
then the log odds af andw’ increase withud, wheredis ~ the measure to be unique.

the length of the contour. Thus long contours are improb
able, and there is a measyre— ¢, asw — oco. Since,
by the same reasoning, there is a meagure— ¢, as

w — oo, the MLN admits more than one meastre.

Two other sufficient conditions are worth mentioning
briefly. One is that, if the weights of the unit clauses are
sufficiently large compared to the weights of the non-unit
ones, the measure is unique. Intuitively, the unit terms
Let us now turn to the mathematical conditions for the ex-“drown out” the interactions, rendering the variables ap-
istence of a unique measure for a given MIN Clearly,  proximately independent. The other condition is that, & th
in the limit of all non-unit clause weights going to zero, MLN is a one-dimensional lattice, it suffices that the total
L defines a unique distribution. Thus, by a continuity ar-interaction between the variables to the left and right gf an
gument, one would expect the same to be true for smalirc be finite. This corresponds to the ergodicity condition
enough weights. This is indeed the case. To make it prefor a Markov chain.

cise, let us first define the notion of the oscillation of a func

tion. Given a functiory : X — R, let the oscillation off, 3.4 Non-unique MLNs

d(f), be defined as

5(f) = max |f(x) — f(x))] At fi.rst sight, it might appear that. non-uniqueness is an un-
x,x'€Dom(X) desirable property, and non-unique MLNs are not an in-
= max|f(x)| — min|f(x)| (6) teresting object of study. However, the non-unique case

- is in fact quite important, because many phenomena of in-
®Notice that this argument fails for a one-dimensional ¢atti  terest are represented by MLNs with non-unique measures
(equivalent to a Markov chain), since in this case an artiiyra (for example, very large social networks with strong word-
large number of sites can be separated from the rest by a con- ' .
tour of length 2. Non-uniqueness (corresponding to a ngoeic of-mouth effects). The question of what these measures

chain) can then only be obtained by making some weights fefini fepresent, and how they relate to each other, then becomes
(corresponding to zero transition probabilities). important. This is the subject of this section.



The first observation is that the set of all Gibbs measure8.5 Infinite Weight Limit

G(v%)is convex. Thatis, ifi, i’ € G(v¥) thenv € G(v1),

wherer = su+(1—s)i/, s € (0,1). Thisis easily verified ~ This section examines the properties of measures over an
by Substituting/ in Equation 4. Hence’ the non_uniquenessMLN in the limit of all equal infinite We|ght5 As we will

of a Gibbs measure implies the existence of infinitely manys€e, this limiting case is central to relationship between
consistent Gibbs measures. Further, many properties of th@€asures over MLNs and the problem of satisfiability.

Setg(VLL) depend on the set of extreme Sibbs measuregonsider an MLNL such that each clause in its CNF form
ex G(v~), wherep € ex G(v™) if p € G(y~) cannot be 55 the same weight. In the limit w — oo, L does
written as a linear combination of two distinct measures inj ¢ correspond to a valid Gibbsian specification, since the
g(r). Hamiltonians defined in Equation 2 are no longer finite.

An important notion to understand the properties of eX_We will show that in the limit of all equal infinite clause
treme Gibbs measures is the notion of a tail event. Consideteights, conditional distributions in Equation 5 are still
a subses’ of S. Leto(S’) denote ther-algebra generated Well defined and are equi-distributions over those assign-
by the set of basic events involving only variablessh ~ ments of variables iXX which satisfy the maximum num-

Then we define the tait-algebraZ as ber of clauses giveBx = y. Further, we will show that
we can still talk about the existence of a measure consistent
T =) o(Sx) (9)  with these conditional distributions, because theseiblistr
Xex tions constitute a valid specification (though not Gibbkian

Any event belonging t&@ is called a tail event7 is pre-  under the same conditions as in the finite weight case.
cisely the set of events which do not depend on the value oliet KB be a first-order knowledge base. Let us consider
any finite set of variables, but rather only on the behaViorEquation 5 when we substitute; — w, v .It can then be
at infinity. For example, in the infinite tosses of a coin, the : = W

. o rewritten as
event that ten consecutive heads come out infinitely many
times is a tail event. Similarly, in the lattice example ie th 1

L _ _ _
previous section, the event that a finite number of variables WX =xSx =y) = 1+ D(x,y) (10)
have the value 1 is a tail event. Eventglircan be thought
of as representing macroscopic properties of the system bathere
ing modeled.
Definition 6. A measureu is trivial on a o-algebra& if  D(x,y) = Z exp wz(fﬂ'(xl’y) — fi(x,y)
w(E)=0orlforall E € €. x'€Dom(X)/{x} J

(11)

The following theorem (adapted from Theorem 7.8 inThisin turn can be rewritten as
Georgii (1988)) describes the relationship between the ex-
treme Gibbs measures and the taialgebra. D(x,y) = Z exp (w(nx (x',y) — nx(x,y)))
Theorem 3. Let L be ac-determinate MLN, and" de- x'€Dom(X)/{x}
note the corresponding Gibbsian specification. Then the (12)

following results hold: where nx(x,y) is the total number of ground clauses

1. A measurg: € ex G(y%)) iff it is trivial on the tail which evaluate to true given the assignmérty). Let
o-algebraT. ng*(y) = maa:xeDo,_n(X)nx(x, y) t_Je_the maximum

2. Each measurg is uniquely determined by its behay- number of clauses which can be satisfied by any assign-
ior on the tailo-algebra, i.e., ify; = ;15 on7T then ~ MeNtX =x, givenSx = y. Then, in the limitw — oo,
T D(x,y) = k, k being some constant, for t€ assign-

. ents satisfyingy’z*® number of clauses. We will call
It is easy to see that each extreme measure corresponds {0 fyingix** (y)

: . . ese thenaximal assignmentsr a given value ofy. We
some particular value for all the macroscopic properties of . .
) will use the notationx(y) to denote the set of all the
the network. In physical systems, extreme measures corre-

spond to phases of the system (e.g., liquid vs. gas, or difr_naxmal a53|gnr_nents tK givenSx = y. Note that for
o . all the non-maximal assignmentB)(x,y) = oo. For a
ferent directions of magnetization), and non-extreme mea-

sures correspond to probability distributions over phasesglven Y equ_amon 10 assigns equal_ probablh_ty to_aI_I the
maximal assignments. In particular, if the KB is satisfiable

Uncertainty over phases arises when our knowledge of a . : o ;
. - oo . andSx = y is some partial satisfying assignment, then the
system is not sufficient to determine its macroscopic state, . . )
X : maximal assignments are precisely the completions of the
Clearly, the study of non-unique MLNs beyond the highly ) o . ; ;
- 0 .7 partial satisfying assignment dictated yognd equation 10
regular ones statistical physicists have focused on p&snis

to be quite interesting. In the next section we take a step ir(]jeflnes a uniform distribution over them.

this direction by considering the problem of satisfiability ~ Now, we need to show that the famify = (v%)xcx is
the context of MLN measures. a valid specification. Going to the definition of a specifica-



tion (Def 1.23 (Georgii, 1988))y is a specificatiof, iffor 4  Satisfiability
anyXy, X, € X, X3 C Xaq, we have
Richardson and Domingos (2006) showed that, in finite do-
vx,(Z|Sx,) = Z vx, (X21[Sx,)7x, (Z|X21, Sx, ynains, first-order logic can be viewed as the limiting case
Xp1=Xz—X1 of Markov logic when all weights tend to infinity, in the
(13)  following sense. If we convert a satisfiable knowledge base
forall Z C X;. A sufficient condition for this to be true is K into an MLN Lk by assigning the same weight— oo
to all clauses, thehk defines a uniform distribution over
%2 (X1 |X21,Sx,) = 1x, (X1|X21, Sx,) (14)  the worlds satisfying. Further, K entails a formulax
iff Li assigns probability 1 to the set of worlds satisfying
Rewriting RHS using Bayes rule we get « (Proposition 4.3). We would like to extend this result to
infinite domains. We will first define the notion ofsatis-
fying measurgwhich is central to the results presented in
this section.

VX2 (le X21 |SX2)
x5 (X21[Sx,)

= TXy (Xl |X217 sz) (15)

Definition 7. Let L be ao-determinate MLN. Given a

;(:Sthbe asmgnmeanzL = x21 such that dentodmlfr_1atgr (éf tctlauseCi € B(L), let V; denote the set of variables ap-
ecomes zero, above expression is not defined. Butfe oo “A measure: e (1) is said to be aatisfy-

can easily be seen that the corresponding terms cancel 0 tg measuréor L if, for every ground clausé; € B(L),

from equation 13 under such asggnments to varlables IIASsigns non-zero probability only to the satisfying assign
X21. Hence, we can altogether ignore these as&gnmentlsnents of the variables i, i.e., u(V, = vi) > 0 implies

SUbSt';L_Jtmgtht: ;(1' Xa21 :t X21 andth2 =yzand o V; = v; is a satisfying assignment far;. S(y%)
expanding out the denominator, we ge denotes the set of all satisfying measuredIfor

X2 (X17X21|3i2) = x, (X1 %21, y2) Informally, a satisfying measure assigns non-zero proba-
Zx/leDom(Xl) Tx2 (X7, X21]y2) bility only to those worlds which are consistent with all the
(16)  formulas inL. Intuitively, existence of a satisfying mea-
Let us first consider the case when the assignmendure forL should be in some way related to the existence
(x1,x21) is maximal givenyz. Lety: = (x21,y2) de-  ofasatisfying assignment for the corresponding knowledge
note the assignment to the variablesSig,. Then, above base. Our next theorem formalizes this intuition.

equation can be written as Theorem 4. Let K be a knowledge base all of whose

clauses ares-determinate, and leL., be the MLN ob-
=1/Inx, (y1)| (17)  tained by assigning weight — oo to all the clauses in
) K. Then there exists a satisfying measureligs iff K is
satisfiable. Mathematically,

|S(v">=)| > 0 < Satisfiable(K) (19)

1/|77X2 (Y2)|
ZX1€77X1 (y1) 1/|77X2 (YZ

or equivalently as

1/1nx, (Y2
b))l ) | | N
I, (y1)l/ %2 (v2)) Proof. Let us first prove that existence of a satisfying mea-
_ ) sure implies satisfiability oK. This is equivalent to prov-
which is clearly true. The case whex, x21) Isnotmax- g that unsatisfiability ofiK implies non-existence of a
imal giveny can be split into two sub-cases. The first g istying measure. LdK be unsatisfiable. Equivalently,
is when whernxz; can not be in any maximal assignment B(K), the Herbrand base d, is unsatisfiable. By Her-

givenys. In this case, the _denomlnator of RHS in €qua-pand's theorem, there exists a finite set of ground clauses
tion 16 becomes zero. But it has already been conmdere% C B(K) that is unsatisfiable. LeV denote the set

The second is whem, is not maximal given(xz1,¥z2).  of variables appearing if. Then every assignmest to
TE%”’ both RHS and LHS are zero in equation 16. Hencey,q yariables inv violates some clause i, Let . de-
v eflngs a valid specification in the limit of all equal in- note a measure fdi... Sincey is a probability measure,
finite weights. > vepom(v) MV = v) = 1. Further, sinceV is finite,
Let L., be ac-determinate MLN in the limit of all equal there exists some € Dom(V) such thafu(V = v) > 0.
infinite weights. Lety= denote the corresponding speci- Let C; € C be some clause violated by the assignment
fication as defined above. It is easy to see that we can stillevery assignment violates some clause). Vetlenote the
apply Theorem 1, as is, to show the existence of a measuget of variables i’; andv; be the restriction of assignment
consistent withye v to the variables iV;. Thenv; is an unsatisfying assign-
ment forC;. Further,u(V; = v;) > uw(V = v) > 0.
®We will drop L in the superscript for clarity Henceu cannot be a satisfying measure Iog,. Since the



above argument holds for apye G(v%=), there does not If p € Ax, is in the image ofAy, underFx,, there is
exist a satisfying measure fir,, whenK is unsatisfiable. someg € Ay, such that

Next, we need to prove that satisfiability Kf implies ex-
istence of a satisfying measure. For the clarity of notation
we will drop the superscript from= in the following part

of the proof. Our proof builds on the proof for the existence et p’ berz—xl p. We have
of a measure presented in Pfeffer (2000) (see Chapter 7).

P(X2) =Y qly2)x,(X2[Y2 =y2)  (23)

Y2

Consider a finite set of variabléé. An assignmenX = x p(x1) = Z p(X1,X21) (24)
is called apartial satisfying assignmeno the variables in x21E€Dom(X2—X4)
X if Jw € €, such thatvx = x andw is a satisfying - ZZQ(Yz)sz (x1,%21]y2)
assignment. Lepx denote a probability distribution over .
X. We callpx asatisfying probability distributiorif it as-
signs non-zero probability only to to partial satisfying as ~ — Z a(yz2) Z’VX2 (x1,X21y2)
signments oK. Let Ax denote the set all satisfying proba- r2 e
bility distributions overX. Itis a subset oR"™, wheren is = Z q(y2)rx, (x1|y2)
the number of values iDom(X). Ax consists of points y2
p € R" satisfying the constraints that > 0, p; = 0 if _ Zq(Y2) Z x, (X1, y12]y2)
i*" assignment is not a partial satisfying assignment and va y12€Dom (Y1 —Ya)
Z?:lpi = 1. Ax is a closed and bounded, and therefore
compact, subset a®™. Further, sinces is satisfiable Ax = Z q(yz2) Z X2 (X1|y12, ¥2) %2 (Y12]Y2)
is non-empty for allX. y2 yiz

o ) ) (using Equation 22)
Let X be a finite set of variable¥ the neighbors oK. It
is easy to see thatX’ O X, we have = Z q(y2) Z%Q (x1|y12,¥2)7x, (Y12[y2)

Y2 Y12
7x (X[Sx) = 7 (X[Y) (20) = > aly2)rx (Vizly2)vx, (xalyiz, y2)

Y2 Yi2

Z Z a(y2)rx2 (Y12lyz)yx, (x1ly1)

In other words, any finite set of variables is independent
of the rest of the network given its neighbors. We define

the mappingFx from Ay to Ax as follows. For each y1 y21€Dom(Y2-Y;)
q € Ay,
= > 1D av2)vxs (vazlya) | vx (xalya)
Fx(g)= Y, ay)wxXY=y) (1) v Lyat
yeDom(Y) (25)

For above mapping to be valid, we need to show that ifNote that thoughy, andy12 do not appear explicitly as
q € Ay thenp = Fx(q) € Ax. Clearly,pis adistribution  symmation variables in the last two lines of above expres-

overX. Hence, we only need to show thais a satisfying  sjon, their values can be uniquely determined giyerand
distribution. Consider a non-satisfying partial assignine v, | et

x to the variables i’X. Then, each term in the summation

above is zero either becauseyajs not a partial satisfying q(y1) = Z q(y2)rx, (y12|y2) (26)
assignment (and hengéy) = 0) or b) y is a partial satis- yor

fying assignment anX = x is not maximal giverY =y

(and hencex (X = x|[Y = y) = 0). Now, if we show thay’ € Avy,, thenp’ = Fx, (¢’) which

L LetX- andX. b fin ¢variabl it is precisely what we set out to prove. So, only thing which
emma. LetX,; andX, be two finite set of variables, with o mains to be shown ig e Ay, . Now,

X; € Xy, and letY; andY, be neighbors oX; and X

respectively. Ip € Ax, isintheimage oAy, underFx,, d(y1) = ZQ(Yz)Wx (y12]y2)
the”sz_xl pisinthe image of\y, underFx, . Yor z
Proof. First note thatY; — Yo C X,. This means that = D _r(yz2yi2)
all the neighbors ofY; — Y3 lie in the setY,. Using yz1
Equation 20, Equation 14 can be rewritten as = > r(y1,y21) (27)
Y21
1%, (X1[Y1,7Z) = vx,(X1|Y1,Z) (22)

wherer is a distribution overyi,y=21). Hence,q is a
whereZ is some finite set of variables. distribution overY;. Next, we need to show that is a



satisfying distribution. Lel; be a non-satisfying partial It follows, therefore, that{Th )>°_, is a decreasing se-
assignment to the variables ;. Then, considering quence of closed, non-empty subsetd,of DefineT,, to
Equation 26, for any assignmegtq, either a)yz is  ben’_, Tr*. By compactness df,, T, is a non-empty
non-satisfying assignment to variablesyn in which case  subset ofl,,.

q(y2) = 0 or b) y12 is not maximal giveny. in which
caseyx,(y1zlyz2) = 0. This implies that/(y1) = 0 for
any non-satisfying partial assignmept. Hence,¢' is a
satisfying distribution. Thereforg is in the image ofAx,

underFx,, as required.

EachT,, is a set of distributions oveX,, such that for ev-
erypin Ty, pis consistent with the conditional distribution
~vx,, for some distributiory overY,,, and furthermore, for
everym > n, pis equal toZXm_Xn p’ forsomep’ € Tpy,.
The final stage of the construction is to UBg to define a

O function " over the basic events, as follows.

We construct a sequence of distributiofy over X,

Now, we will show the existence of the required satisfy-as follows. ForFy, choose any element dfx,. For
ing measure by construction. We begin by constructing af» With » > 1, choose an element dfx, such that
increasing sequence of finite sets that covers all the varifn-1 = > x, Fn. Sincef,_; € Tx,_,, such choice
ables ofS. Since the number of variables in the network Must exist. Form; < ms, we have inductively that
is countably infinite, we can order the variables is some sefm: = 2_x,.,-x,,, F'm.- It follows that we can define
quence{ X1, X»,--- X,,,--- } such that for every variable the functionF" over basic events unambiguously by setting
V € Vi, 3k satisfyingV = X,.. Forn > 0, define F(F) = F,(F) for anyn such that all variables mentioned
by X are inX,,.

Xn = {X1, Xz, Xn} @8) i easy to see thaf is additive. LetE;, Es, - - - E,, be a

set of disjoint basic events such that their uniors a basic
Note that,X; C X, C --- by definition. Now, for each event. Letn be such that all variables mentioned in any of
X, we define a set of probability distributions ov&s,  the E; or in E are inX,,. Then, since, is a probability
that are consistent with the conditional distributiog,,, distribution,
for some distribution over the neighbors¥f,. LetY,, be

the neighbors oX,,. Define the sel,, C Ax, to be the - - m - - .

image ofAy,, under the mapping mappirfgx,.. S, is the F(E) = Fu(E) = Fn(UZ1 BY) = Z Fn(Bm) = Z P
continuous image of the compact ge¢, so itis compact. = 1_1(29)

L, is obviously also non-empty, since it is the image of aygjng the fact that no basic event is the infinitely countable
non-empty set. disjoint union of basic events, additivity is sufficient to-e

Next, we use the compactness to show that for eégh  Sure countable additivity. Furthef) can be expressed as
there is some non-empty subsetlgfof distributions that ~ the even{.X, = 0V X, = 1]. Then,u(Q) = F1([X, =
are consistent with some distributionlp, for everym > 0V X1 = 1]) = 1. Hencey is a probability measure over
n. Form > n, define the seT™ C Ax. to be the image the spac&Q, &).

of I, under the marginalization operatdix _x . We  Finally, 4 satisfies the required conditions of being consis-
show the following: tent with the local probabilistic dependencies (Definition
1.23 (Georgii, 1988)). LeX be a finite set of variables. Let
1. T} is closed. This is clear, since it is the continuousY denote the set of neighborsXf. LetZ denote the set of
image of a compact set, and therefore compact, anéleighbors ofX U Y. By Bayes rulep(X|Y) = %
therefore closed. By construction, for some satisfying distributiqroverz,

2. T is non-empty. This is obvious, since it is the im- we have

age of non-empty set.

3. T™ C I,. This follows immediately from the previ- #XUY) >, ¢(z)yxuy(XUY]Z)
ous Lemma. w(Y) Yo 2z 1(z)yxuy (X UYIZ)

)
(
>, 4(2)yxuy (XY U Z)yxuv (Y|Z)
(
)

4. If my < meo, Tt D T2, This follows from point =

3 as follows. T™2 is the image ofl,,,, under the 2 2 1(2) 130y (XY U Z)7x0v (Y]Z)

marginalization operatofs = > 5 _x_, which is _ 2 4@ (XY )yxuv (Y[Z)
the composition of the operatofg — > X X >ox 222 4(2)yx (X[Y)xuy (Y|Z)
andGy = Yy .. Since the image oT'™2 un- __xXY) 3, a@)vxuy (Y[Z)
der H is a subset ol,, by point 3, andI™: is the 2 1x(X[Y) 32, a(z)vxuy (Y|Z)

image ofl,,, underG, it follows thatTh* O T2, = x(X[Y)



Therefore,u is a measure admitted by the specificationRecursive probability models are a combination of
~%e . Further, given any finite set of variabldg by con- Bayesian networks and description logics (Pfeffer &
structiony assigns non-zero probability only to satisfying Koller, 2000). Like Markov logic, RPMs require finite
partial assignments dX. This is in turn implies that for neighborhoods, and in fact existence for RPMs can be
every clause;, u assigns non-zero probability only to the proved succinctly by converting them to Markov logic and
satisfying assignments of variables@). Hence,u is a  applying Theorem 1. Pfeffer and Koller show that RPMs
satisfying measure, as required. O do not always represent unique distributions, but do not
study conditions for uniqueness. Description logics are a
Corollary. LetK be satisfiable. Let be a first-order for-  restricted subset of first-order logic, and thus MLNs are
mula, andLg, be the MLN obtained by assigning weight considerably more flexible than RPMs.
w — oo to all clauses INK U {—«}. ThenK entails« iff

L2 has no satisfying measure. Mathematically, Contingent Bayesian networks (Milch et al., 2005) allow

infinite ancestors, but require that, for each variable with
infinite ancestors, there exist a set of mutually exclusive

KEa e [SHH) =0 (30)  and exhaustive contexts (assignments to finite sets of vari-

ables) such that in every context only a finite number of

Thus, for knowledge bases containing onfdeterminate ~ ancestors affect the probability of the variable. Effeetyy
clauses and no infinite existentials, with Herbrand or quasiin any given world the network is always finite. This is
Herbrand interpretations, first-order logic can be viewed a @ Strong restriction, excluding even simple infinite models
the limiting case of Markov logic when all weights tend like Markov chains.

to infinity. Whether these conditions can be relaxed is ayy|ii-entity Bayesian networks are another relational ex-

question for future work. tension of Bayesian networks (Laskey & Costa, 2005).
Laskey and Costa claim that MEBNs allow infinite par-
5 Related Work ents and arbitrary first-order formulas, but the definitién o

MEBN explicitly requires that, for each atodi and in-

A number of relational representations capable of handling"62SIng sequence of substagesC 5 C ..., there exist

infinite domains have been proposed in recent years. Ger‘?‘—ﬁniteN such thatP(X|Sy,) = P(X|S) for k > N.

erally, they rely on strong restrictions to make this IOOssi_Th!s_assumptlon is tantamount to requmng_that podes have
ble. To our knowledge, Markov logic is the most flexible a finite number of ancestors, and makes it straighforward

language for modeling infinite relational domains to date [0 Prove emstgnce and uniqueness using Kolmogoroy’s
In this section we briefly review the main approaches.  theorem. But it necessarily excludes many dependencies
expressible in first-order logic (e.gvx Jy Loves(y,x)).
Stochastic logic programs (Muggleton, 1996) are generalFurther, unlike in Markov logic, first-order formulas in
izations of probabilistic context-free grammars, which al MEBNs must be hard (and consistent). Laskey and Costa
low for infinite derivations but as a result do not always do not specify a language for specifying conditional distri
represent valid distributions (Booth & Thompson, 1973).butions; they simply assume that a terminating algorithm
SLPs (and related languages like independent choice logifor computing them exists. Thus the question of what in-
(Poole, 1997) and PRISM (Sato & Kameya, 1997)) are dinite distributions can be specified by MEBNs remains
special case of Markov logic, because logic programs argpen.
a special case of first-order logic and PCFGs are a special

case of Gibbs distributions (Chi, 1999). .
, _ , 6 Conclusion
Many approaches combine logic programming and

Bayesian networks. The most advanced one is arguabl% this paper, we extended the semantics of Markov logic

Bayesian logic programs (Kersting & De Raedt, 2001). .~ . . ; .
Kersting and De Raedt show that, if all nodes have a fi_to infinite domains using the theory of Gibbs measures. We

. . . gave sufficient conditions for the existence and uniqueness
nite number of ancestors, a BLP represents a unique disz . . . .

- o o - . of ameasure consistent with the local potentials defined by
tribution. This is a stronger restriction than finite neigh-

borhoods. BLPs can be converted into Markov logic in thea.n MLN. We also described the structure of the set of con-

) . _sistent measures when itis not a singleton, and showed how
same way that Bayesian networks can be converted int P .
e problem of satisfiability can be cast in terms of MLN
Markov networks.

measures. Directions for future work include designing
Jaeger (1998) shows that probabilistic queries are delg@dablifted inference and learning algorithms for infinite MLNSs,
for a very restricted language where a ground atom cannaderiving alternative conditions for existence and unique-
depend on other groundings of the same predicate. Jaegeess, analyzing the structure of consistent measure sets in
shows that if this restriction is removed queries become unmore detail, extending the theory to non-Herbrand inter-
decidable. pretations and recursive random fields (Lowd & Domin-



gos, 2007), and studying interesting special cases offafini
MLNSs.
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