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Abstract

Combining first-order logic and probability has
long been a goal of Al. Markov logic (Richard-
son & Domingos, 2006) accomplishes this by at-
taching weights to first-order formulas and view-
ing them as templates for features of Markov
networks. Unfortunately, it does not have the
full power of first-order logic, because it is only
defined for finite domains. This paper extends
Markov logic to infinite domains, by casting it
in the framework of Gibbs measures (Georgii,
1988). We show that a Markov logic network
(MLN) admits a Gibbs measure as long as each
ground atom has a finite humber of neighbors.
Many interesting cases fall in this category. We
also show that an MLN admits a unique measure
if the weights of its non-unit clauses are small
enough. We then examine the structure of the set
of consistent measures in the non-unique case.
Many important phenomena, including systems
with phase transitions, are represented by MLNs
with non-unique measures. We relate the prob-
lem of satisfiability in first-order logic to the
properties of MLN measures, and discuss how
Markov logic relates to previous infinite models.

Introduction

works, an approach known as knowledge-based model con-
struction (Wellman et al., 1992). More recently, many com-
binations of (subsets of) first-order logic and probability
have been proposed in the burgeoning field of statistical re-
lational learning (Getoor & Taskar, 2007), including prob-
abilistic relational models (Friedman et al., 1999), stsch

tic logic programs (Muggleton, 1996), Bayesian logic pro-
grams (Kersting & De Raedt, 2001), and others.

One of the most powerful representations to date is Markov
logic (Richardson & Domingos, 2006). Markov logic is

a simple combination of Markov networks and first-order
logic: each first-order formula has an associated weight,
and each grounding of a formula becomes a feature in a
Markov network, with the corresponding weight. The use
of Markov networks instead of Bayesian networks obvi-
ates the difficult problem of avoiding cycles in all possi-
ble groundings of a relational model (Taskar et al., 2002).
The use of first-order logic instead of more limited repre-
sentations (e.g., description logics, Horn clauses) mikes
possible to compactly represent a broader range of depen-
dencies. For example, a dependency between relations like
“Friends of friends are (usually) friends” cannot be speci-
fied compactly in (say) probabilistic relational modelst bu
in Markov logic it suffices to write down the corresponding
formula and weight. Markov logic has been successfully
applied in a variety of domains (Domingos et al., 2006),
and open source software with implementations of state-of-
the-art inference and learning algorithms for it is avd#ab
(Kok et al., 2006).

One limitation of Markov logic is that it is only defined for

Most Al problems are characterized by both uncertaintyﬁnite domains. While this is seldom a problem in prac-

and complex structure, in the form of multiple interact- tice, considering the infinite limit can simplify the treat-

ing objects and relations. Handling both requires COM- - nt of some problems, and yield new insights. We would
bining the capabilities of probabilistic models and first- X

der loaic. At s t hi this h | hi also like to elucidate how far it is possible to combine the
:)orryerasgliave gear\rt]r?esrec? sa'tgalriv‘ien réienivsegrsongWitlﬁi-&J" power of first-order logic and graphical models. Thus
Al Nilsson (1986) is an early example. Bacchus (1990)| this paper we extend Markov logic to infinite domains.

'Our treat t is based on the th f Gibb
Halpern (1990) and coworkers (e.g., Bacchual. (1996)) Ur treafment 1s based on the teoty of 15Ibbs Measures

duced bstantial bodv of rel t th ical I((Georgii, 1988). Gibbs measures are infinite-dimensional
produced a substantial body ot relevant theoretical Worky, iqygions of Markov networks, and have been studied ex-

Around the same time, severql authors began using IOgIf:ensively by statistical physicists and mathematicalsttat
programs to compactly specify complex Bayesian net-



cians, due to their importance in modeling systems within U(C). For convenience, in this paper we will define it
phase transitions. We begin with some necessary baclas the union of the two, and talk about #@ms inB(C)
ground on first-order logic and Gibbs measures. We themndclauses inB(C) as needed.

define MLNs over infinite domains, state sufficient condi- , . L .
. . . " An interpretationis a mapping between the constant, pred-
tions for the existence and uniqueness of a probability mea-

sure consistent with a given MLN, and examine the impor_|cate and function symbols in the language and the objects,

tant case of MLNs with non-unique measures. Next, Wefuncuons and relations in the domain. Ingerbrand in-

; terpretationthere is a one-to-one mapping between ground
establish a correspondence between the problem of Sat'?érms and objects (i.e., every object is represented by some
fiability in logic and the existence of MLN measures with ) Y y 00l P y

. . . . . eqround term, and no two ground terms correspond to the
certain properties. We conclude with a discussion of th Zame object). Anodelor possible worldspecifies which
relationship between infinite MLNs and previous infinite JeCy). P b

: relations hold true in the domain. Together with an inter-
relational models. S . .
pretation, it assigns a truth value to every atomic formula,
and thus to every formula in the knowledge base.
2 Background

. ] 2.2 Gibbs Measures
2.1 First-Order Logic

) ) Gibbs measures are infinite-dimensional generalizatibns o
A first-order knowledge base a set of sentences or for- Gjnpg distributions. A Gibbs distribution, also known as a

mulas in first-order logic (Genesereth & Nilsson, 1987).|54.linear model or exponential model, and equivalent un-
Formulas are constructed using four types of symbols: congar mild conditions to a Markov network or Markov ran-
stants, variables, functions, and predicates. Constamt sy yom field assigns to a statethe probability

bols represent objects in the domain of discourse (e.g-, peo

ple: Anna, Bob, Chris, etc.). Variable symbols range over P(X=x) = 1 exp <Z wi s (x)> 1)
the objects in the domain (or a subset of it, in which case Z -

they aretyped. Function symbols (e.gMother0f) repre-
sent mappings from tuples of objects to objects. Predicat

symbols represent relations among objects (Bxg.ends) per we will be concerned exclusively with Boolean states

or attributes of objects (e.gSmokes). A termis any ex- : : .
. : . and functions (i.e., states are binary vectors, correspond
pression representing an object. It can be a constant,a vari

able, or a function applied to a tuple of terms. For exampleIng to possi.ble Worlds,_and functions are Iogical formulas)
Anna, x, andGreatestCommonDivisor(x,y) are terms. Markov logic can t.)e wevygd as the use of ﬁ.rSt_ord?r logic
An atomic formulaor atomis a predicate symbol applied o compact!y specify families of these functions (R'Char.d'
to a tuple of terms (e.gEriends(x, MotherOf(Anna))). son & I;)c_>mmgos,_20(_)6). Thus, a ”at.“rf"" way to gener_ahze
A ground ternis a term containing no variables. giound it to infinite doma|_r_ls is to use the eX|st|_ng theory of Gibbs
atomor ground predicatés an atomic formula all of whose measures (Georgii, 1988). Although G|bb§ measures were
arguments are ground terms. Formulas are recursively cor?—”ma”ly develolptled to n}lc?de_ldregr;]ular lattices (ﬁ .g.,hferro.
structed from atomic formulas using logical connectivesm"’.lgnetIC materials, gas/liquid phases, etc.), t. e thery |
and quantifiers. Apositive literalis an atomic formula; quite general, and applies equally well to the richer struc-

A : . \ tures definable using Markov logic.
anegative literalis a negated atomic formula. dlauseis
a disjunction of literals. Every first-order formula can be One problem with defining probability distributions over
converted into an equivalent formulapnenex conjunctive  infinite domains is that the probability of most or all worlds

wherew; is any real numberf; is an arbitrary function or
featureof x, andZ is a normalization constant. In this pa-

normal form Qx; ... Qx, C(x1,...,z,), whereeaclf)is  will be zero. Measure theory allows us to overcome this
a quantifier, ther; are the quantified variables, any. . .) problem by instead assigning probabilities to sets of weorld
is a conjunction of clauses. (Billingsley, 1995). LetQ) denote the set of all possible

worlds, and€ denote a set of subsets@f £ must be ar-
algebra, i.e., it must be non-empty and closed under com-
plements and countable unions. A function £ — R is

said to be grobability measurever (Q, &) if u(E) > 0
foreveryE € &, u(Q) = 1, andu(U E:) = > u(E),
where the union is taken over any countable collection of
disjoint elements of .

The Herbrand universeU(C) of a set of clause€ is
the set of all ground terms constructible from the func-
tion and constant symbols i@ (or, if C contains no con-
stants, some arbitrary constant, e.gy), If C contains
function symbols,U(C) is infinite. (For example, ifC
contains solely the functiod and no constantsUU(C)

= {£(A),£(£(4)),£(£(£(8))),...}.) Some authors define
the Herbrand baseB(C) of C as the set of all ground A related difficulty is that in infinite domains the sum in
atoms constructible from the predicate symbol€drand  Equation 1 may not exist. However, the distribution of any
the terms inU(C). Others define it as the set of all ground finite subset of the state variables conditioned on its com-
clauses constructible from the clause€drand the terms plement is still well defined. We can thus define the infinite



distribution indirectly by means of an infinite collectioh o (1) is th bability of evenE dina to th
finite conditional distributions. This is the basic idea in #1x () IS the probability of event’ according to the con-
Gibbs measures. ditional probabilitiesyx (E|Sx ) and the measupeonSx.

We are now ready to define Gibbs measure.
Let us introduce some notation which will be used through-Definition 2. Lety

out the paper. Consider a countable set of variaBles
{X1, Xs,...}, where eachX; takes values i{0,1}. Let

X be a finite set of variables iff, andSx = S\ X. A
possible worldv € Q2 is an assignment to all the variables
in S. Letwx denote the assignment to the variableXin

underw, andwx, the assignment t&;. Let X denote the | other words, a Gibbs measure is consistent with a Gibb-
set of all finite subsets . A basic eveniX = x is an  sjan specification if its event probabilities agree withstao
assignment of values to a finite subset of variaBdes X',  optained from the specification. Given a Gibbsian speci-
and denotes the set of possible worldsc €2 such that fication, we can ask whether there exists a Gibbs measure
wx = x. LetE be the set of all basic events, anddebe  consistent with it [G(v®)| > 0), and whether it is unique
the o-algebra generated [, i.e., the smallest-algebra  (|G(4®)| = 1). In the non-unique case, we can ask what
containingE. An elementE of £ is called areventandf  the structure off (?) is, and what the measures in it repre-

is theevent spaceThe following treatment is adapted from sent. We can also ask whether Gibbs measures with specific
Georgii (1988). properties exist. The theory of Gibbs measures addresses
Definition 1. Aninteraction potentiafor simply apoten- ~ these questions. In this paper we apply it to the case of
tial) is a family® = (®v)vex of functionsdy : V. — R Gibbsian specifications defined by MLNs.

such that, for allX € X andw € €, the summation

ng(w) _ Z q)V(wV) ) 3 Infinite MLNs

VeX , VNX£0

® pe a Gibbsian specification. Let

be a probability measure over the measurable sg&are)
such that, for everX € X andE € &, u(E) = py%(E).
Then the specification® is said to admit theGibbs mea-
sureu. Further,G(y?®) denotes the set of all such measures.

o . G 3.1 Definition
is finite. Hy is called the Hamiltonian ifX for ®.

A Markov logic network (MLN) is a set of weighted first-
Intuitively, the HamiltonianHy, includes a contribution  grder formulas. As we saw in the previous section, these
from all the potentialsby which share at least one vari- ¢an pe converted to equivalent formulas in prenex CNF.
able with the seX. Given an interaction potentidl and a e will assume throughout that all existentially quantified
subset of variableX, we define the conditional distribu- yariaples have finite domains, unless otherwise specified.

tion 7% (X|Sx) as o While this is a significant restriction, it still includesses-
V(X =x[Sx =y) = exp(Hx (%, y)) (3) tially all previous probabilistic relational represeitats as
Z exp(Hx (%,¥)) special cases. Existentially quantified formulas can now
xe€Dom(X) be replaced by finite disjunctions. By distributing conjunc

where the denominator is called thartition functionin X~ tions over disjunctions, every prenex CNF can now be con-
for ® and denoted byz2, andDom(X) is the domain of verted to a quantifier-free CNF, with all variables impligit
X. Equation 3 can be easily extended to arbitrary eventgniversally quantified.

E € & by definingyk (E|Sx) to be non-zero only when  The Herbrand universtl(L) of an MLN L is the set of
E is consistent with the assignment #x. Details are )| ground terms constructible from the constants and func-
skipped here to keep the discussion simple, and can bgyn symbols in the MLN. The Herbrand baB¢L) of L is
found in Georgii (1988). The family of conditional distri- the set of all ground atoms and clauses constructible from

butionsy® = (yx )xex as defined above is calledbb-  the predicates i, the clauses in the CNF form &f, and

sian specificatiort the terms ifU(L), replacing typed variables only by terms
Given a measurg over (€2, £) and conditional probabili- of _the corresponding type. We assume Herbrand inter_pre-
tiesy2 (E|Sx), let the compositiony2 be defined as :\z/;ll'lt_l(l)\lns throughout. We are now ready to formally define
s.
pyx (E) = /D y )7§(E|SX) o (4)  Definition 3. A Markov logic network (MLN)L is a (fi-
om(Sx

nite) set of pairs(F;, w;), whereF; is a formula in first-

!For physical reasons, this equation is usually written with order logic andw; is a real number. L defines a count-
negative sign in the exponent, i.exp[—Hx (w)]. Since thisis  able set of variables$ and interaction potentiatb™ =
n((ltg(:#ggl?nt in Markov logic and does not affect any of theiltss (@%{)XGX’ X being the set of all finite subsets $f as
wi it it. .

2Georgii (1988) defines Gibbsian specifications in terms ef un follows:
derlying independent specifications. For simplicity, weuase
these to be equidistributions and omit them throughoutghzer. 1. S contains a binary variable for each atom B(L).



The value of this variable is 1 if the atom is true, and If the MLN contains no function symbols, Definition 3 re-

0 otherwise. duces to the one in Richardson and Domingos (2006), with
C being the constants appearing in the MLN. This can be
easily seen by substituting = S in Equation 5. Notice

it would be equally possible to define features for conjunc-
tions of clauses, and this may be preferable for some appli-
cations.

2. ¥ (x) = >, w;fi(x), where the sum is over the
clauseC; in B(L) whose arguments are exactly the
elements oX. If F;(; is the formula inL. from which
C; originated, andF;(;) gave rise ton clauses in the
CNF form ofL, thenw; = w;/n. f;(x) = 1if C; is
true in worldx, and f; = 0 otherwise. .

3.2 Existence

For ® to correspond to a well-defined Gibbsian specifica-| et T, be a locally finite MLN. The focus of this sec-
tion, the corresponding Hamiltonians (Equation 2) need tGjgn is to show that its specification® always admits
be finite. This brings us to the following definition. some measurg. It is useful to first gain some intuition
Definition 4. LetC be a set of first-order clauses. Given a as to why this might not always be the case. Consider
ground atomX € B(C), let theneighboreN(X) of X be  an MLN stating that each person is loved by exactly one
the atoms that appear with it in some ground clau€eis  person: ¥x 3'y Loves(y,x). Let w, denote the event
said to belocally finite if each atom in the Herbrand base Loves(P,,Anna), i.e., Anna is loved by théth person in
of C has a finite number of neighbors, i.8X € B(C), the (countably infinite) domain. Then, in the limit of infi-
IN(X)| < co. An MLN (or knowledge base) is said to be nite weights, one would expect thafl  wy) = ©(Q) = 1.
locally finite if the set of its clauses is locally finite. But in fact u(Jws) = > p(wr) = 0. The first equality
holds because the,’s are disjoint, and the second one be-
It is easy to see that local finiteness is sufficient to ensurgayse eachy;, has zero probability of occurring by itself.
a well-defined Gibbsian SpeCification. Given such an MLNThere is a Contradiction’ and there exists no measure con-
L, the distributiomy of a set of variableX € X condi-  sistent with the MLN abové. The reason the MLN fails
tioned on its complemeriix is given by to have a measure is that the formulas are not local, in the
exp (Zj w; f(%, y)) sense that the truth value of an atom depends on the truth
values of infinite others. Locality is in fact the key propert
Zx’eDom(X) exp (Zj w; f5 (%', y)) for the existence of a consistent measure, and local finite-
ness ensures it.

Definition 6. A functionf : Q@ — R is localif it depends
only on a finite subseV € X. A Gibbsian specification
v = (vx)xex is local if eachyx is local.

1% (X=x|Sx=y) =

where the sum is over the clausesBiiL) that contai(nSZat
least one element &X, and f;(x,y) = 1 if clauseCj is
true under the assignme(y, y) and 0 otherwise. The cor-
responding Gibbsian specification is denotedyby

For an MLN to be locally finite, it suffices that it be-  Lemma 1. LetL be a locally finite MLN, and™ the cor-
determinate responding specification. Thed is local.

Definition 5. A clause isr-determinatéf all the variables ~ Proof. Each Hamiltoniarfy; is local, since by local finite-
with infinite domains it contains appear in all literalsA ~ ness it depends only on a finite number of potentigds It
set of clauses is-determinate if each clause in the set is follows that eachy is local, and hence the corresponding
o-determinate. An MLN is-determinate if the set of its Specificationy™ is also local. O
clauses isr-determinate.

We now state the theorem for the existence of a measure
Notice that this definition does not require that all litsral admitted byy".

have the same infinite arguments; for example, the Claus?heorem 1. Let L be a locally finite MLN, andy’ —

Q(x,y) = R(£(x), g(x,y)) iso-determinate. In essence, (v%)xcx be the corresponding Gibbsian specification.

determinacy requires that the neighbors of an atom be defhen there exists a measyrever (2, €) admitted byy"
fined by functions of its arguments. Because functions can ’ '

; . L i.e., Ly > 1.
be composed indefinitely, the network can be infinite; be- 9(v2)] = )
cause first-order clauses have finite lengtideterminacy Proof. To show the existence of a measurewe need to

ensures that neighborhoods are still finite. prove the following two conditions:

- L o
3This is related to the notion of @eterminate clausi logic 1. The nefyx (X[Sx))xex has a cluster point with re-

programming. In a determinate clause, the grounding of éne v spect to the weak topology df, £).
ables in the head determines the grounding of all the vaasaibl ) L
the body. In infinite MLNs, any literal in a clause can be inéer 2. Each cluster point ofyx (X|Sx))xex belongs to

from the others, not just the head from the body, so we require g(yL),
that the (infinite-domain) variables in each literal deteventhe
variables in the others. 4See Example 4.16 in Georgii (1988) for a detailed proof.



Itis a well known result that, if all the variables; have  Tne oscillation of a function is thus simply the difference

finite domains, then the net in Condition 1 has a clustelenyeen its extreme values. We can now state a sufficient
point (see Section 4.2 in Georgii (1988)). Thus, since all.gndition for the existence of a unique measure.

the variables in the MLN are binary, Condition 1 holds. . L )
Further, sincey™ is local, every cluster point of the Theorem 2. LetL be a locally finite MLN with interaction

net(+% (X|Sx))xc.v belongs tag(+%) (Comment 4.18 in potential®” and Gibbsian specification” such that

Georgii (1988)). Therefore, Condition 2 is also satisfied. sup Z (IC;| = D)|w;| < 2 @)

Hence there exists a measureonsistent with the specifi- Xi€S ¢ co(xy)

cationy™, as required. O  whereC(X;) is the set of ground clauses in whigh ap-
pears,|C;| is the number of ground atoms appearing in

3.3 Uniqueness clauseC;, andw; is its weight. Then/™ admits a unique

. _ . Gibbs measure.
This section addresses the question of under what condi-

tions an MLN admits a unique measure. Let us first gainp.yot Based on Theorem 8.7 and Proposition 8.8 in
some intuition as to why an MLN might admit more than e qqii (1988), a sufficient condition for uniqueness is
one measure. The only condition an MLIN imposes

on a measure is that it should be consistent with the lo- sup Z (VI =1)d(@y) <2 (8)

cal conditional distributions%. But since these distribu- e _
tions are local, they do not determine the behavior of thdRewriting this condition in terms of the ground formulas in
measure at infinity. Consider, for example, a semi-infinitehich a variableX; appears (see Definition 3) yields the
two-dimensional lattice, where neighboring sites are morélesired result. L
likely to have the same truth value than not. This can

be represented by formulas of the foim,y Q(x,y) <  Notethat, as alluded to before, the above condition does not
Q(s(x),y) andvx,y Q(x,y) < Q(x,s(y)), with a single  depend on the weight of the unit clauses. This is because
constant0 to define the origin(0,0), and withs() be-  for a unit clausgC;| — 1 = 0. If we define the interac-
ing the successor function. The higher the weighof  tion between two variables as the sum of the weights of all
these formulas, the more likely neighbors are to have théhe ground clauses in which they appear together, then the
same value. This MLN has two extreme states: one whergbove theorem states that the total sum of the interactions
Vx S(x), and one whergx —S(x). Let us call these states of any variable with its neighbors should be less than 2 for
£ and¢-, and let¢’ be a local perturbation &f (i.e., ¢’ dif- the measure to be unique.

fers from¢ on only a finite number of sites). If we draw a

. ; Two other sufficient conditions are worth mentionin
contour around the sites whegeand¢ differ, then the log g

dds of¢ ande’ | ithod. whered is the | hof briefly. One is that, if the weights of the unit clauses are
odas of€ and¢” increase withud, whered is the length o sufficiently large compared to the weights of the non-unit

the contour. Thus long contours are improbable, and therSnes, the measure is unique. Intuitively, the unit terms

IS a measurg — 8 asw — co. Since, by the same rea- “drown out” the interactions, rendering the variables ap-
soning, there is a measyse, — d¢_ asw — o, the MLN proximately independent. The other condition is that, & th
admits more than one meastire. MLN is a one-dimensional lattice, it suffices that the total
Let us now turn to the mathematical conditions for the ex-interaction between the variables to the left and right gf an
istence of a unique measure for a given MIN Clearly, ~ arc be finite. This corresponds to the ergodicity condition
in the limit of all non-unit clause weights going to zero, for a Markov chain.

L defines a unique distribution. Thus, by a continuity ar-

gument, one would expect the same to be true for smal8.4 Non-unique MLNs

enough weights. This is indeed the case. To make it pre-

cise, let us first define the notion of the oscillation of a func At first sight, it might appear that non-uniqueness is an un-
tion. Given a functiorf : X — R, let the oscillation off, desirable property, and non-unique MLNs are not an in-

0(f), be defined as teresting object of study. However, the non-unique case
, is in fact quite important, because many phenomena of in-
of) = X,X,S}D%’,;(X) £ () = £ terest are represented by MLNs with non-unique measures

= max|f(x)| — min | f(x)| (6) (for example, very large social networks with strong word-

of-mouth effects). The question of what these measures
®Notice that this argument fails for a one-dimensional datti represent, and how they relate to each other, then becomes

(equivalent to a Markov chain), since in this case an arigra important. This is the subject of this section.

large number of sites can be separated from the rest by a con- . L .
tour of length 2. Non-uniqueness (corresponding to a ngoeic Yhe first observation is that the set of all Gibbs measures

chain) can then only be obtained by making some weights tafini G(y")is convex. Thatis, ifi, i’ € G(v") thenv € G(+1),
(corresponding to zero transition probabilities). wherev = su+(1—s)u’, s € (0,1). Thisis easily verified



by substituting in Equation 4. Hence, the non-uniqueness3.5 Infinite-Weight Limit

of a Gibbs measure implies the existence of infinitely many

consistent Gibbs measures. Further, many properties of thENis section examines the properties of MLN measures in
Setg(fYL) depend on the set of extreme Gibbs measureg'le limit of all equal infinite Welghts As we will see, this
ex G(+X), wherep € ex G(v%) if 4 € G(+%) cannot be  limiting case is central to the relationship between MLN

written as a linear combination of two distinct measures inmeasures and the problem of satisfiability.

G(vh). Consider an MLNL such that each clause in its CNF form

An important notion to understand the properties of ex-has the same weight. In the limit w — oo, L does
treme Gibbs measures is the notion of a tail event. Considétot correspond to a valid Gibbsian specification, since the
a subseB’ of S. Leto(S’) denote ther-algebra generated Hamiltonians defined in Equation 2 are no longer finite.
by the set of basic events invo|ving 0n|y variablesSh We will show that in the limit of all equal infinite clause

Then we define the tait-algebraZ as weights, the conditional distributions in Equation 5 aik st
well defined and are equi-distributions over those assign-

T = m o(Sx) (9)  ments of variables iXX which satisfy the maximum num-

Xex ber of clauses giveBx = y. Further, we will show that

we can still talk about the existence of a measure consistent
Any event belonging td@ is called a tail eventZ is pre-  with these conditional distributions, because theseidistr
cisely the set of events which do not depend on the value afons constitute a valid specification (though not Gibbsian
any finite set of variables, but rather only on the behaviorunder the same conditions as in the finite weight case.
at infinity. For example, in the infinite tosses of a coin, the
event that ten consecutive heads come out infinitely man
times is a tail event. Similarly, in the lattice example ie th
previous section, the event that a finite number of variable
have the value 1 is a tail event. Eventglircan be thought L 1
of as representing macroscopic properties of the system be- XX =x|Sx =y) = HT(XJ)
ing modeled.

%et KB be a first-order knowledge base. Let us consider
quation 5 when we substitute; = w. It can then be
Lewritten as

(10)

— o _ where
Definition 7. A measurey is trivial on a o-algebra& if

w(E)=0orlforall Ecé&.
D(x,y) = > exp wZ(fj(X',y)—fj(X,y))

The following theorem (adapted from Theorem 7.8 in x'€Dom(X)/{x} J

Georgii (1988)) describes the relationship between the ex- (12)

treme Gibbs measures and the ta#hlgebra. This in turn can be rewritten as

Theorem 3. LetL be a locally finite MLN, and™ denote D _ oy

the corresponding Gibbsian specification. Then the follow- (,¥) x’GDomZ(X)/{x} exp (w(nx (x',y) = nx(x.y)))

ing results hold: (12)

1. A measurg: € ex G(yY)) iff it is trivial on the tail ~ wherenx(x,y) is the total number of ground clauses sat-

o-algebra7. isfied by the assignmettk,y). Letn¥**(y) be the max-

] ) ) ) imum number of clauses which can be satisfied by any
2. Each measurg is uniquely determined by its behav- assignmenX — x, givenSx — y. Then, in the limit

ior on the tailo-algebra, i.e., ifuy = pp on7 then =~ 7 o, D(x,y) = k, k being some constant, for the
H1 = f2- X assignments satisfyingz®*(y) number of clauses. We

. will call these themaximal assignmenter a given value
It is easy to see that each extreme measure corresponds t

some particular value for all the macroscopic properties o y. We will use the notationx (y) to denote the set of

) all the maximal assignments ¥ givenSx = y. Note that

the network. In physical systems, extreme measures corre- . X
I for all the non-maximal assignment®(x,y) = co. For
spond to phases of the system (e.g., liquid vs. gas, or dif-" . : . .
o L a giveny, equation 10 assigns equal probability to all the
ferent directions of magnetization), and non-extreme mea- > . . ) ) . o
A maximal assignments. In particular, if the KB is satisfiable
sures correspond to probability distributions over phases . . o i
) . andSx = y is some partial satisfying assignment, then the
Uncertainty over phases arises when our knowledge of a_ " . . .
. L S . maximal assignments are precisely the completions of the
system is not sufficient to determine its macroscopic state,

Clearly, the study of non-unique MLNs beyond the highly parpal Sat'Smeg as§|gpmgntd|ctated)b3and Equation 10
e L .~ defines a uniform distribution over them.

regular ones statistical physicists have focused on pesnis

to be quite interesting. In the next section we take a step itNow, we need to show that the familyr = (7% )xex is

this direction by considering the problem of satisfiability = a valid specification. Going to the definition of a specifi-

the context of MLN measures. cation (Definition 1.23 in Georgii (1988)),is a specifica-



tion 8, if for any X, X5 € X, X; C X3, we have of Markov logic when all weights tend to infinity, in the
following sense. If we convert a satisfiable knowledge base
a2 (ZISx.) = D %2 (X21/8x,)7x, (Z1X21,Sx, K into an MLN L by assigning the same weight— oo
X21=X2-X1 to all clauses, thehk defines a uniform distribution over
- . . (13)_ the worlds satisfyind<. Further,K entails a formulax
forall Z C X;. A sufficient condition for this to be true is iff L assigns probability 1 to the set of worlds satisfying
vx, (X1|X21,Sx,) = ¥x, (X1|X21, Sx,) (14) « (_P_ropositio_n 4.3). We wpuld Iik_e to exten(_j this res_ult to
infinite domains. We will first define the notion ofsatis-
Rewriting left hand side using Bayes rule we obtain fying measurgwhich is central to the results presented in

this section.
VX2 (X17 X21|SX2) _ (X |X S ) (15) L . ;
o X |Sxa) IXq (A1][A21,9X, Definition 8. LetL be a locally finite MLN. Given a clause

) ] C; € B(L), let V; denote the set of Boolean variables
For the assignmenX,; = x271 such that the denominator appearing inC;. A measure: € G(+*) is said to be a

of the right hand side becomes zero, the above exPrESSi%tisfying measuréor L if, for every ground claus€’; €

is not defined. But it can easily be seen that the corresponq3(L)’ 1 assigns non-zero probability only to the satisfying
ing terms cancel out from equation 13 under such assignsssignments of the variables i, i.e. w(Vi =v;) >0
ments to variables iiX 2, . Hence, we can altogether ignore implies thatV, = v; is a satisfying assignment faf;.

these assignments. Substitutlg = x1, X21 = x21and  g(4L) denotes the set of all satisfying measuresfor
Sx, = y=2 and expanding out the denominator, we obtain

Informally, a satisfying measure assigns non-zero proba-
- = vx, (X1]|x21,¥2) bility only to those worlds which are consistent with all the
2 xj eDom(xX1) 7Xa (X1, X21[y2) formulas inL. Intuitively, existence of a satisfying mea-
(16) sure forL should be in some way related to the existence

Let us f!rst c0_n5|de_r the case when the ass'gnmenéfasatisfying assignment for the corresponding knowledge
(Xl’xﬂ,) is maximal givery. Lety: = (x21,y2) denote  pace Our next theorem formalizes this intuition.
the assignment to the variables$x,. Then, the above

X, (X1,X21]y2)

equation can be written as Theorem 4. LetK be a Ioc_:ally finite kn_ovyledge pase, and
let L., be the MLN obtained by assigning weight —
1/|mx (y2)| = 1/ Inx, ()] (17) oo toall the clauses ir. Then there exists a satisfying
le@]xl (¥1) 1/|nx,(y2)] * measure foil, iff K is satisfiable. Mathematically,
or equivalently as |S(y">=)| > 0 < Satisfiable(K) (19)
1/|77X2(y2)| _ 1/| s . . . )
=1/Inx, (y1)| (18)  Proof. Let us first prove that existence of a satisfying mea
Imx, (Y1)l/ %2 (y2)]

sure implies satisfiability oK. This is equivalent to prov-

which is clearly true. The case whéxy , x21 ) is not max- ing that unsatisfiability ofIiK implies non-existence of a
imal giveny» can be split into two sub-cases. The first satisfying measure. LdK be unsatisfiable. Equivalently,

is when whenx,; can not be in any maximal assignment B(K), the Herbrand base &, is unsatisfiable. By Her-
giveny-. In this case, the denominator of the right handbrand’s theorem, there exists a finite set of ground clauses
side in equation 16 becomes zero. But this case has already & B(K) that is unsatisfiable. LeV denote the set
been considered. The second is whanis not maximal  Of variables appearing i€. Then every assignmentto
given(xz1,y2). Then, both the right hand side and the left the variables inV violates some clause i@. Let u de-
hand side are zero in equation 16. Hendedefines avalid note a measure fdi... Sincep is a probability measure,
specification in the limit of all equal infinite weights. > vepom(v) MV = v) = 1. Further, sinceV is finite,
there exists some € Dom(V) such thafu(V = v) > 0.

Left Ft‘oo be. ?]tlociny E:‘tg MLtN t'ﬂ the limit of 3‘.“ equal . Let C; € C be some clause violated by the assignment
Infintte weignts. ety enote the corresponaing speci- every assignment violates some clause). Vetlenote the
fication as defined above. It is easy to see that we can sti

v Th 1 i 10 show th st ¢ et of variables i©’; andv; be the restriction of assignment
apply theorem L asis, to showthe existence of a measuig,, ihe variables i'v;. Thenv; is an unsatisfying assign-
consistent withye=.

ment forC;. Further,u(V; = v;) > w(V = v) > 0.
o Henceu cannot be a satisfying measure Ioy,. Since the
4 Satisfiability above argument holds for apyc G(+%=), there does not
exist a satisfying measure fiu,, whenK is unsatisfiable.
R|chard§on and Dom_mgos (2005) showed that_, " f|n|te dO'Next, we need to prove that satisfiability Kfimplies exis-
mains, first-order logic can be viewed as the limiting case o A .
tence of a satisfying measure. For simplicity of notation,

®We will drop subscripiL for clarity. we will drop the superscript from%= in the following



part of the proof. Our proof builds on the proof for the

definition of a maximal assignment, see Section 3.5) given

existence of a measure presented in Pfeffer (2000, Chapt&f = y (and hencex (X =x|Y =y) = 0).

7). The basic idea is as follows. Given a set of variable

Xa (n = |X4|) we show the existence a non-empty sub
setT,, of all possible distributions oveX,, which satisfies
the following two conditions: (a) every element'®f, as-
signs non-zero probability only to partial satisfying @ssi
ments ofX,, (assignments to the variables X, which

agree with an overall satisfying assignment); (b) For ev-

ery setX,, O X,, there is a non-empty subset 8f,,

marginalization of whose elements leads to the elements of
T,. The theory of the sequences of compact sets (define
over an arbitrary ordering of the variables in the network)

ﬁ_emma 2. Let X; and X, be two finite sets of variables,

with X; C X5, and letY; andY, be the neighbors aX;
and X, respectively. Ip € Ax, is in the image oAy,
underFx,, theanrxl pis in the image oAy, under
Fx,.

Proof of above lemma is given in the appendix. We will

ow show the existence of the required satisfying mea-
re by construction. We begin by constructing an in-

Creasing sequence of finite sets that covers all the vari-

S

ables ofS. Since the number of variables in the network

is used to show the above existence. Existence of a satis-

fying measure is then shown by defining the measure fo

any basic evenk, in terms of an element it'y,, X,, being
some smallest set containing all the variableg’in

Consider a finite set of variablés. An assignmenX = x
is called apartial satisfying assignmernb the variables
in X if Jw € Q, such thatox = x andw is a satisfy-
ing assignment. Lepx denote a probability distribution
overX. We callpx asatisfying probability distributiorif

it assigns non-zero probability only to to partial satisfyi
assignments oK. Let Ax denote the set of all satisfying
probability distributions oveK. Itis a subset oR™, where
n = |Dom(X)|. Ax consists of pointp € R™ satisfying
the constraints that; > 0, p; = 0 if the i*"* assignment is
not a partial satisfying assignment apgf” , p; = 1. Ax

IS countably infinite, we can order the variables is some se-
quence{ X1, Xo,--- X,,,--- } such that for every variable

X €8S, 3k satisfyingX = X}. Forn > 0, define

X, ={X1,Xs, - X, } (22)
Note that,X; C X, C --- by definition. Now, for each
X, we define a set of probability distributions ovX&r,
that are consistent with the conditional distributigg,,,

for some distribution over the neighbors Xf,. LetY,

be the neighbors aK,,. Define the sel,, C Ax,_ to be
the image ofAy_ under the mappingx,,. S, is the con-
tinuous image of the compact sty , so it is compact.
I,, is obviously also non-empty, since it is the image of a
non-empty set.

is a closed and bounded, and therefore compact, subset of

R™. Further, sinceX is satisfiable Ax is non-empty for
all X.

Let X be a finite set of variables. LeN(X) =
U N(X;) — X denote the set of neighbors &. Let

X, eX

Z denote the set of neighbors B U Y. It is easy to see

thatvX’ O X, we have

7x (X[Sx) = 7% (X|N (X)) (20)

In other words, any finite set of variables is independent of
the rest of the network given its neighbors. For the ease

of notation, we will refer toN(X) asY. We define the
mappingFx from Ay to Ax as follows. For eacly €

Ay,
>

y€Dom(Y)

Fx(q) ay)=xX[Y =y) (21)

For the above mapping to be valid, we need to show that if

q € Ay thenp = Fx(q) € Ax. Clearly,p is a distribution
overX. Hence, we only need to show thais a satisfying
distribution. Consider a non-satisfying partial assignime
x to the variables irX. Then, each term in the summation
above is zero either because ga)s not a partial satisfy-
ing assignment (and hengéy) = 0) or (b)y is a partial
satisfying assignment arl = x is not maximal (for the

Next, we use the compactness to show that for e&gh
there is some non-empty subsetIgfof distributions that
are consistent with some distributionlip, for everym >
n. Form > n, define the seT'* C Ax,, to be the image
of I,;,, under the marginalization operatEXm_Xn. We
show the following:

1. T is closed. This is clear, since it is the continuous
image of a compact set, and therefore compact, and
therefore closed.

2. T is non-empty. This is obvious, since it is the im-
age of a non-empty set.

3. T C I,. This follows immediately from the previ-

ous lemma.

4. If mq < mo, TP D T2, This follows from point
3 as follows. T2 is the image ofl,,, under the
marginalization operataliy = mez _x,» Which is
the composition of the operatofs = mez Xun,
andGy = > x,. _x,- Since the image oT';*» un-
der H is a subset ol,,, by point 3, andI';** is the
image ofl,,, under(Gy, it follows thatTp O T2,
It follows, therefore, thai{'T%,)5c_,, is a decreasing se-
guence of closed, non-empty subsetd,of DefineT,, to



ben_ T™. By compactness df,, T, is a non-empty 2, 4@)x v (X[Y, Z)yx v (Y]Z)
subset off,. Yok 22 1(2)yx vy (XY, Z)vx v (Y|Z)
EachT, is a set of distributions oveX,, such that for ev- 2,9 x (XY )x v (Y[Z)
erypin Ty, pis consistent with the conditional distribution > 2oz 1(2)yx (X[Y)vx, v (Y]Z)

~x,, for some distribution; overY,,, and furthermore, for o yx(X[Y) Y, a(z)yx, v (YIZ)
everym > n,pisequaltoy y _ p'forsomep’ € Tpy,. T x (XYY, a(z)vx v (YZ)
The final stage of the construction is to UEg to define a — x(X[Y)

function I over the basic events, as follows.

We first construct a sequence of distributidisover X, TEerefore,u is a measure admitted by the specification
as follows. ForFy, choose any element &Fx,. For 7 - Further, given any finite set of variabl&s by con-
F, with n > 1, choose an element dfx, such that strupuonu assigns non-zero p_rot_)ablhty pnly_to satisfying
Fo_y = Yy F,. SinceF,_, € Tx,_,, such choice partial assignments cX This is in turn |mp_I|es that for
must exist. ”mel < ms, we have inductively that €Very (_:Iausei’i_, /1 @ssigns non-zero probability only_ to the
F, = mez—xml F,,,. It follows that we can define satisfying assignments of variables@). Hence,u is a

the functionF' over the set of basic everiisby unambigu- satisfying measure, as required. -

ously by settingl”(E) = F,(E) for anyn such thatall  corollary. LetK be a locally finite knowledge base. Let
variables mentioned by < E are inX,. a be a first-order formula, and.2, be the MLN obtained

Itis easy to see that is additive. LetE;, B, --- E,, bea DY assigning weighty — oo to all clauses inK U {—a}.
set of disjoint basic events such that their uniois abasic ~ ThenK entailsa iff LS, has no satisfying measure. Math-
event. Letn be such that all variables mentioned in any of ématically,

the £; orin £ are inX,,. Then, sincer, is a probability KlEa < [SHF=) =0 (24)

distribution, o _ )
Thus, for locally finite knowledge bases with Herbrand in-

Fo(E) = Fo (U, E)) Ferpretations, first-ordgr logic can bg viewed as thelli_mit-
m ing case of Markov logic when all weights tend to infinity.
Z Fo(Ep) = Z F(E;) (23)  Whether these conditions can be relaxed is a question for
P future work.

F(E)

=1

Using the fact that no basic event can be expresseg Related Work
as an infinitely countable disjoint union of basic events

(Lemma 5.4.8 in Pfeffer (2000)), additivity is sufficient to . . .
o . A number of relational representations capable of handling
ensure countable additivity over the set of basic events. It

) . nfinite domains have been proposed in recent years. Gen-
is a basic result from measure theory that any countably ad— prop y

" . . erally, they rely on strong restrictions to make this possi-
ditive function” on a base sd can be uniquely extended ble. To our knowledge, Markov logic is the most flexible
to a measure, on theos-algebra generated . For any

eventE € &, if E is the finite unioru} E; of disjoint basic llirlﬂiusasg:czicgnn\;\?edglrligg I?gc;;ivrter:zt:]g?i gomri:shtgsdate.
events, defing(E) = X7 f(F;). If E is the countable dis- y PP '

joint union of U E;, defineu(E) = lim,_ E{F(Ei). Stochastic logic programs (Muggleton, 1996) are general-
It is easy to see that this limit always exists in our caseizations of probabilistic context-free grammars. PCFGs al
Countable additivity off’ ensures that is also countably low for infinite derivations but as a result do not always rep-

additive. Further() can be expressed as the evgiit = resent valid distributions (Booth & Thompson, 1973). In
0V X; =1]. Then,u(Q) = Fi([X; =0V X; =1]) =1.  SLPs these issues are avoided by explicitly assigning zero
Hence,u is a probability measure over the spd€e &). probability to infinite derivations. Similar remarks apply

to related languages like independent choice logic (Poole,

Finally, 1 satisfies the required conditions of being con-1997) and PRISM (Sato & Kameya, 1997).

sistent with the local probabilistic dependencies (Defini-
tion 1.23 in Georgii (1988)). LeK be a finite set of vari- Many approaches combine logic programming and
ables. LetY denote the set of neighbors &. Let Z Bayesian networks. The most advanced one is arguably
denote the set of neighbors & U Y. By Bayes rule, Bayesian logic programs (Kersting & De Raedt, 2001).
w(X[Y) = wMXY) By construction, for some satisfying Kersting and De Raedt show that, if all nodes have a fi-

distributiong g(\;é)rzi we have nite number of ancestors, a BLP represents a unique dis-
tribution. This is a stronger restriction than finite neigh-

w(X,Y) >, a(z)vx v (X, Y|Z) borhoods. Richardson and Domingos (2006) showed how
W = S, a2)xy (X, Y|Z) BLPs can be converted into Markov logic without loss of

representational efficiency.



Jaeger (1998) shows that probabilistic queries are deleidabpretations and recursive random fields (Lowd & Domin-
for a very restricted language where a ground atom cannajos, 2007), and studying interesting special cases oftafini
depend on other groundings of the same predicate. Jaeg®BiLNs.

shows that if this restriction is removed queries become un-
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A Proof of Lemma 2 q'(y1) =D aly2)rxs(yazly2) (28)
Y21
Lemma 2. Let X; and X, be two finite set of variables, Now, if we show thay’ € Ay, thenp’ = Fx, (¢') which

with X; C X, and letY, andY; be neighbors oK, and  ig precisely what we set out to prove. Thus, it remains only
X, respectively. Ip € Ax, is in the image ofdy, under {5 show thay’ € Ay, . Now,
Fx,, thenzxz_Xl pisinthe image oAy, underFx, . '

d(y1) = Y ay2)rxs(yizly2)
Proof. First note thatY; — Yo C X,. This means that y21
all the_ neighbors o_le - Y, liein th(_e setY.. Using — ZT(Y27YI2)
Equation 20, Equation 14 can be rewritten as Yo
v, (X1|Y1,Z) = vx, (X1|Y1,Z) (25) = Z 7(y1,y21) (29)

Y21

whereZ is some finite set of variables. where is a distribution over(yy,y»1). Hence,q is a

If p € Ax, is in the image ofAy, underFx,, there is  distribution overY;. Next, we need to show that is a
someg € Ay, such that satisfying distribution. Let; be a non-satisfying partial
assignment to the variables ;. Then, considering

p(Xy) = ZQ(Y2)7X2 (X2|Y2 = ys) (26)  Equation 28, for any assignmegb:, either (a)y2 is a

va non-satisfying assignment to variables Y, in which

caseq(yz2) = 0 or b) y12 is not maximal givenya,,
Letp' be) x,_x, p- We have in which casevyx, (y12]y2) = 0. This implies that
¢'(y1) = 0 for any non-satisfying partial assignmey.
P(x1) = Z p(x1,X21) Hence,q’ is a satisfying distribution. Therefopé is in the
x21€Dom(Xa—X1) image ofAx, underFx,, as required.
= > ay2)yx (x1, xa1ly2) 0
X21 Y2
= ZQ(Yz)Z’YXz(XLleWz)
Y2 X21
= ZQ(Yz)’sz (x1lyz2)

Y2
= > dly2) > X (X1, ¥12[y2)
Y2

y12€Dom(Y1—Y2)

- Z q(y2) Z X, (X1]Y12, ¥2)7x%, (Y12]Y2)

Y2 Y12



